Metamath Proof Explorer


Theorem funsneqopb

Description: A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020) (Avoid depending on this detail.)

Ref Expression
Hypotheses funsndifnop.a 𝐴 ∈ V
funsndifnop.b 𝐵 ∈ V
funsndifnop.g 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ }
Assertion funsneqopb ( 𝐴 = 𝐵𝐺 ∈ ( V × V ) )

Proof

Step Hyp Ref Expression
1 funsndifnop.a 𝐴 ∈ V
2 funsndifnop.b 𝐵 ∈ V
3 funsndifnop.g 𝐺 = { ⟨ 𝐴 , 𝐵 ⟩ }
4 opeq1 ( 𝐴 = 𝐵 → ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐵 , 𝐵 ⟩ )
5 4 sneqd ( 𝐴 = 𝐵 → { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝐵 , 𝐵 ⟩ } )
6 2 snopeqopsnid { ⟨ 𝐵 , 𝐵 ⟩ } = ⟨ { 𝐵 } , { 𝐵 } ⟩
7 5 6 eqtrdi ( 𝐴 = 𝐵 → { ⟨ 𝐴 , 𝐵 ⟩ } = ⟨ { 𝐵 } , { 𝐵 } ⟩ )
8 3 7 eqtrid ( 𝐴 = 𝐵𝐺 = ⟨ { 𝐵 } , { 𝐵 } ⟩ )
9 snex { 𝐵 } ∈ V
10 9 9 opelvv ⟨ { 𝐵 } , { 𝐵 } ⟩ ∈ ( V × V )
11 8 10 eqeltrdi ( 𝐴 = 𝐵𝐺 ∈ ( V × V ) )
12 1 2 3 funsndifnop ( 𝐴𝐵 → ¬ 𝐺 ∈ ( V × V ) )
13 12 necon4ai ( 𝐺 ∈ ( V × V ) → 𝐴 = 𝐵 )
14 11 13 impbii ( 𝐴 = 𝐵𝐺 ∈ ( V × V ) )