| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 ) ) | 
						
							| 2 | 1 | anim2i | ⊢ ( ( 𝑍  ∈  V  ∧  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) ) )  →  ( 𝑍  ∈  V  ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 ) ) ) | 
						
							| 3 | 2 | ancomd | ⊢ ( ( 𝑍  ∈  V  ∧  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) ) )  →  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  𝑍  ∈  V ) ) | 
						
							| 4 |  | df-3an | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊  ∧  𝑍  ∈  V )  ↔  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  𝑍  ∈  V ) ) | 
						
							| 5 | 3 4 | sylibr | ⊢ ( ( 𝑍  ∈  V  ∧  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) ) )  →  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊  ∧  𝑍  ∈  V ) ) | 
						
							| 6 |  | snopfsupp | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊  ∧  𝑍  ∈  V )  →  { 〈 𝑋 ,  𝑌 〉 }  finSupp  𝑍 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝑍  ∈  V  ∧  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) ) )  →  { 〈 𝑋 ,  𝑌 〉 }  finSupp  𝑍 ) | 
						
							| 8 |  | funsng | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  →  Fun  { 〈 𝑋 ,  𝑌 〉 } ) | 
						
							| 9 |  | simpl | ⊢ ( ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 )  →  Fun  𝐹 ) | 
						
							| 10 | 8 9 | anim12ci | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) )  →  ( Fun  𝐹  ∧  Fun  { 〈 𝑋 ,  𝑌 〉 } ) ) | 
						
							| 11 |  | dmsnopg | ⊢ ( 𝑌  ∈  𝑊  →  dom  { 〈 𝑋 ,  𝑌 〉 }  =  { 𝑋 } ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  →  dom  { 〈 𝑋 ,  𝑌 〉 }  =  { 𝑋 } ) | 
						
							| 13 | 12 | ineq2d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  →  ( dom  𝐹  ∩  dom  { 〈 𝑋 ,  𝑌 〉 } )  =  ( dom  𝐹  ∩  { 𝑋 } ) ) | 
						
							| 14 |  | df-nel | ⊢ ( 𝑋  ∉  dom  𝐹  ↔  ¬  𝑋  ∈  dom  𝐹 ) | 
						
							| 15 |  | disjsn | ⊢ ( ( dom  𝐹  ∩  { 𝑋 } )  =  ∅  ↔  ¬  𝑋  ∈  dom  𝐹 ) | 
						
							| 16 | 14 15 | sylbb2 | ⊢ ( 𝑋  ∉  dom  𝐹  →  ( dom  𝐹  ∩  { 𝑋 } )  =  ∅ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 )  →  ( dom  𝐹  ∩  { 𝑋 } )  =  ∅ ) | 
						
							| 18 | 13 17 | sylan9eq | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) )  →  ( dom  𝐹  ∩  dom  { 〈 𝑋 ,  𝑌 〉 } )  =  ∅ ) | 
						
							| 19 | 10 18 | jca | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) )  →  ( ( Fun  𝐹  ∧  Fun  { 〈 𝑋 ,  𝑌 〉 } )  ∧  ( dom  𝐹  ∩  dom  { 〈 𝑋 ,  𝑌 〉 } )  =  ∅ ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑍  ∈  V  ∧  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) ) )  →  ( ( Fun  𝐹  ∧  Fun  { 〈 𝑋 ,  𝑌 〉 } )  ∧  ( dom  𝐹  ∩  dom  { 〈 𝑋 ,  𝑌 〉 } )  =  ∅ ) ) | 
						
							| 21 |  | funun | ⊢ ( ( ( Fun  𝐹  ∧  Fun  { 〈 𝑋 ,  𝑌 〉 } )  ∧  ( dom  𝐹  ∩  dom  { 〈 𝑋 ,  𝑌 〉 } )  =  ∅ )  →  Fun  ( 𝐹  ∪  { 〈 𝑋 ,  𝑌 〉 } ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝑍  ∈  V  ∧  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) ) )  →  Fun  ( 𝐹  ∪  { 〈 𝑋 ,  𝑌 〉 } ) ) | 
						
							| 23 | 22 | fsuppunbi | ⊢ ( ( 𝑍  ∈  V  ∧  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) ) )  →  ( ( 𝐹  ∪  { 〈 𝑋 ,  𝑌 〉 } )  finSupp  𝑍  ↔  ( 𝐹  finSupp  𝑍  ∧  { 〈 𝑋 ,  𝑌 〉 }  finSupp  𝑍 ) ) ) | 
						
							| 24 | 7 23 | mpbiran2d | ⊢ ( ( 𝑍  ∈  V  ∧  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) ) )  →  ( ( 𝐹  ∪  { 〈 𝑋 ,  𝑌 〉 } )  finSupp  𝑍  ↔  𝐹  finSupp  𝑍 ) ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝑍  ∈  V  →  ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) )  →  ( ( 𝐹  ∪  { 〈 𝑋 ,  𝑌 〉 } )  finSupp  𝑍  ↔  𝐹  finSupp  𝑍 ) ) ) | 
						
							| 26 |  | relfsupp | ⊢ Rel   finSupp | 
						
							| 27 | 26 | brrelex2i | ⊢ ( ( 𝐹  ∪  { 〈 𝑋 ,  𝑌 〉 } )  finSupp  𝑍  →  𝑍  ∈  V ) | 
						
							| 28 | 26 | brrelex2i | ⊢ ( 𝐹  finSupp  𝑍  →  𝑍  ∈  V ) | 
						
							| 29 | 27 28 | pm5.21ni | ⊢ ( ¬  𝑍  ∈  V  →  ( ( 𝐹  ∪  { 〈 𝑋 ,  𝑌 〉 } )  finSupp  𝑍  ↔  𝐹  finSupp  𝑍 ) ) | 
						
							| 30 | 29 | a1d | ⊢ ( ¬  𝑍  ∈  V  →  ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) )  →  ( ( 𝐹  ∪  { 〈 𝑋 ,  𝑌 〉 } )  finSupp  𝑍  ↔  𝐹  finSupp  𝑍 ) ) ) | 
						
							| 31 | 25 30 | pm2.61i | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑊 )  ∧  ( Fun  𝐹  ∧  𝑋  ∉  dom  𝐹 ) )  →  ( ( 𝐹  ∪  { 〈 𝑋 ,  𝑌 〉 } )  finSupp  𝑍  ↔  𝐹  finSupp  𝑍 ) ) |