Metamath Proof Explorer


Theorem funsng

Description: A singleton of an ordered pair is a function. Theorem 10.5 of Quine p. 65. (Contributed by NM, 28-Jun-2011)

Ref Expression
Assertion funsng ( ( 𝐴𝑉𝐵𝑊 ) → Fun { ⟨ 𝐴 , 𝐵 ⟩ } )

Proof

Step Hyp Ref Expression
1 funcnvsn Fun { ⟨ 𝐵 , 𝐴 ⟩ }
2 cnvsng ( ( 𝐵𝑊𝐴𝑉 ) → { ⟨ 𝐵 , 𝐴 ⟩ } = { ⟨ 𝐴 , 𝐵 ⟩ } )
3 2 ancoms ( ( 𝐴𝑉𝐵𝑊 ) → { ⟨ 𝐵 , 𝐴 ⟩ } = { ⟨ 𝐴 , 𝐵 ⟩ } )
4 3 funeqd ( ( 𝐴𝑉𝐵𝑊 ) → ( Fun { ⟨ 𝐵 , 𝐴 ⟩ } ↔ Fun { ⟨ 𝐴 , 𝐵 ⟩ } ) )
5 1 4 mpbii ( ( 𝐴𝑉𝐵𝑊 ) → Fun { ⟨ 𝐴 , 𝐵 ⟩ } )