| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relss |
⊢ ( 𝐴 ⊆ 𝐵 → ( Rel 𝐵 → Rel 𝐴 ) ) |
| 2 |
|
coss1 |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∘ ◡ 𝐴 ) ⊆ ( 𝐵 ∘ ◡ 𝐴 ) ) |
| 3 |
|
cnvss |
⊢ ( 𝐴 ⊆ 𝐵 → ◡ 𝐴 ⊆ ◡ 𝐵 ) |
| 4 |
|
coss2 |
⊢ ( ◡ 𝐴 ⊆ ◡ 𝐵 → ( 𝐵 ∘ ◡ 𝐴 ) ⊆ ( 𝐵 ∘ ◡ 𝐵 ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∘ ◡ 𝐴 ) ⊆ ( 𝐵 ∘ ◡ 𝐵 ) ) |
| 6 |
2 5
|
sstrd |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∘ ◡ 𝐴 ) ⊆ ( 𝐵 ∘ ◡ 𝐵 ) ) |
| 7 |
|
sstr2 |
⊢ ( ( 𝐴 ∘ ◡ 𝐴 ) ⊆ ( 𝐵 ∘ ◡ 𝐵 ) → ( ( 𝐵 ∘ ◡ 𝐵 ) ⊆ I → ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐵 ∘ ◡ 𝐵 ) ⊆ I → ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ) |
| 9 |
1 8
|
anim12d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( Rel 𝐵 ∧ ( 𝐵 ∘ ◡ 𝐵 ) ⊆ I ) → ( Rel 𝐴 ∧ ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ) ) |
| 10 |
|
df-fun |
⊢ ( Fun 𝐵 ↔ ( Rel 𝐵 ∧ ( 𝐵 ∘ ◡ 𝐵 ) ⊆ I ) ) |
| 11 |
|
df-fun |
⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ( 𝐴 ∘ ◡ 𝐴 ) ⊆ I ) ) |
| 12 |
9 10 11
|
3imtr4g |
⊢ ( 𝐴 ⊆ 𝐵 → ( Fun 𝐵 → Fun 𝐴 ) ) |