Step |
Hyp |
Ref |
Expression |
1 |
|
funss |
⊢ ( 𝐹 ⊆ 𝐺 → ( Fun 𝐺 → Fun 𝐹 ) ) |
2 |
1
|
impcom |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → Fun 𝐹 ) |
3 |
2
|
funfnd |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → 𝐹 Fn dom 𝐹 ) |
4 |
|
funfn |
⊢ ( Fun 𝐺 ↔ 𝐺 Fn dom 𝐺 ) |
5 |
4
|
biimpi |
⊢ ( Fun 𝐺 → 𝐺 Fn dom 𝐺 ) |
6 |
5
|
adantr |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → 𝐺 Fn dom 𝐺 ) |
7 |
3 6
|
jca |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → ( 𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺 ) ) |
8 |
7
|
3adant3 |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺 ) ) |
9 |
8
|
adantr |
⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → ( 𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺 ) ) |
10 |
|
dmss |
⊢ ( 𝐹 ⊆ 𝐺 → dom 𝐹 ⊆ dom 𝐺 ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → dom 𝐹 ⊆ dom 𝐺 ) |
12 |
11
|
adantr |
⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → dom 𝐹 ⊆ dom 𝐺 ) |
13 |
|
dmexg |
⊢ ( 𝐺 ∈ 𝑉 → dom 𝐺 ∈ V ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → dom 𝐺 ∈ V ) |
15 |
14
|
adantr |
⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → dom 𝐺 ∈ V ) |
16 |
|
simpr |
⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) |
17 |
12 15 16
|
3jca |
⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → ( dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V ) ) |
18 |
9 17
|
jca |
⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → ( ( 𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺 ) ∧ ( dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V ) ) ) |
19 |
|
funssfv |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
20 |
19
|
3expa |
⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
21 |
|
eqeq1 |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
22 |
21
|
biimpd |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
23 |
20 22
|
syl |
⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
24 |
23
|
ralrimiva |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ) → ∀ 𝑥 ∈ dom 𝐹 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
25 |
24
|
3adant3 |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → ∀ 𝑥 ∈ dom 𝐹 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
26 |
25
|
adantr |
⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → ∀ 𝑥 ∈ dom 𝐹 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
27 |
|
suppfnss |
⊢ ( ( ( 𝐹 Fn dom 𝐹 ∧ 𝐺 Fn dom 𝐺 ) ∧ ( dom 𝐹 ⊆ dom 𝐺 ∧ dom 𝐺 ∈ V ∧ 𝑍 ∈ V ) ) → ( ∀ 𝑥 ∈ dom 𝐹 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) ) |
28 |
18 26 27
|
sylc |
⊢ ( ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |
29 |
28
|
expcom |
⊢ ( 𝑍 ∈ V → ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) ) |
30 |
|
ssid |
⊢ ∅ ⊆ ∅ |
31 |
|
simpr |
⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) |
32 |
|
supp0prc |
⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ ) |
33 |
31 32
|
nsyl5 |
⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 supp 𝑍 ) = ∅ ) |
34 |
|
simpr |
⊢ ( ( 𝐺 ∈ V ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) |
35 |
|
supp0prc |
⊢ ( ¬ ( 𝐺 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐺 supp 𝑍 ) = ∅ ) |
36 |
34 35
|
nsyl5 |
⊢ ( ¬ 𝑍 ∈ V → ( 𝐺 supp 𝑍 ) = ∅ ) |
37 |
33 36
|
sseq12d |
⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ↔ ∅ ⊆ ∅ ) ) |
38 |
30 37
|
mpbiri |
⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |
39 |
38
|
a1d |
⊢ ( ¬ 𝑍 ∈ V → ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) ) |
40 |
29 39
|
pm2.61i |
⊢ ( ( Fun 𝐺 ∧ 𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |