Metamath Proof Explorer


Theorem funssxp

Description: Two ways of specifying a partial function from A to B . (Contributed by NM, 13-Nov-2007)

Ref Expression
Assertion funssxp ( ( Fun 𝐹𝐹 ⊆ ( 𝐴 × 𝐵 ) ) ↔ ( 𝐹 : dom 𝐹𝐵 ∧ dom 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
2 1 biimpi ( Fun 𝐹𝐹 Fn dom 𝐹 )
3 rnss ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ran 𝐹 ⊆ ran ( 𝐴 × 𝐵 ) )
4 rnxpss ran ( 𝐴 × 𝐵 ) ⊆ 𝐵
5 3 4 sstrdi ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ran 𝐹𝐵 )
6 2 5 anim12i ( ( Fun 𝐹𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹𝐵 ) )
7 df-f ( 𝐹 : dom 𝐹𝐵 ↔ ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹𝐵 ) )
8 6 7 sylibr ( ( Fun 𝐹𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → 𝐹 : dom 𝐹𝐵 )
9 dmss ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → dom 𝐹 ⊆ dom ( 𝐴 × 𝐵 ) )
10 dmxpss dom ( 𝐴 × 𝐵 ) ⊆ 𝐴
11 9 10 sstrdi ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → dom 𝐹𝐴 )
12 11 adantl ( ( Fun 𝐹𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → dom 𝐹𝐴 )
13 8 12 jca ( ( Fun 𝐹𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → ( 𝐹 : dom 𝐹𝐵 ∧ dom 𝐹𝐴 ) )
14 ffun ( 𝐹 : dom 𝐹𝐵 → Fun 𝐹 )
15 14 adantr ( ( 𝐹 : dom 𝐹𝐵 ∧ dom 𝐹𝐴 ) → Fun 𝐹 )
16 fssxp ( 𝐹 : dom 𝐹𝐵𝐹 ⊆ ( dom 𝐹 × 𝐵 ) )
17 xpss1 ( dom 𝐹𝐴 → ( dom 𝐹 × 𝐵 ) ⊆ ( 𝐴 × 𝐵 ) )
18 16 17 sylan9ss ( ( 𝐹 : dom 𝐹𝐵 ∧ dom 𝐹𝐴 ) → 𝐹 ⊆ ( 𝐴 × 𝐵 ) )
19 15 18 jca ( ( 𝐹 : dom 𝐹𝐵 ∧ dom 𝐹𝐴 ) → ( Fun 𝐹𝐹 ⊆ ( 𝐴 × 𝐵 ) ) )
20 13 19 impbii ( ( Fun 𝐹𝐹 ⊆ ( 𝐴 × 𝐵 ) ) ↔ ( 𝐹 : dom 𝐹𝐵 ∧ dom 𝐹𝐴 ) )