Step |
Hyp |
Ref |
Expression |
1 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
2 |
1
|
biimpi |
⊢ ( Fun 𝐹 → 𝐹 Fn dom 𝐹 ) |
3 |
|
rnss |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ran 𝐹 ⊆ ran ( 𝐴 × 𝐵 ) ) |
4 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
5 |
3 4
|
sstrdi |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ran 𝐹 ⊆ 𝐵 ) |
6 |
2 5
|
anim12i |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵 ) ) |
7 |
|
df-f |
⊢ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ↔ ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ 𝐵 ) ) |
8 |
6 7
|
sylibr |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → 𝐹 : dom 𝐹 ⟶ 𝐵 ) |
9 |
|
dmss |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → dom 𝐹 ⊆ dom ( 𝐴 × 𝐵 ) ) |
10 |
|
dmxpss |
⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 |
11 |
9 10
|
sstrdi |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → dom 𝐹 ⊆ 𝐴 ) |
12 |
11
|
adantl |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → dom 𝐹 ⊆ 𝐴 ) |
13 |
8 12
|
jca |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) → ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) ) |
14 |
|
ffun |
⊢ ( 𝐹 : dom 𝐹 ⟶ 𝐵 → Fun 𝐹 ) |
15 |
14
|
adantr |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) → Fun 𝐹 ) |
16 |
|
fssxp |
⊢ ( 𝐹 : dom 𝐹 ⟶ 𝐵 → 𝐹 ⊆ ( dom 𝐹 × 𝐵 ) ) |
17 |
|
xpss1 |
⊢ ( dom 𝐹 ⊆ 𝐴 → ( dom 𝐹 × 𝐵 ) ⊆ ( 𝐴 × 𝐵 ) ) |
18 |
16 17
|
sylan9ss |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) |
19 |
15 18
|
jca |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) ) |
20 |
13 19
|
impbii |
⊢ ( ( Fun 𝐹 ∧ 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝐵 ∧ dom 𝐹 ⊆ 𝐴 ) ) |