Metamath Proof Explorer


Theorem funtp

Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses funtp.1 𝐴 ∈ V
funtp.2 𝐵 ∈ V
funtp.3 𝐶 ∈ V
funtp.4 𝐷 ∈ V
funtp.5 𝐸 ∈ V
funtp.6 𝐹 ∈ V
Assertion funtp ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → Fun { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } )

Proof

Step Hyp Ref Expression
1 funtp.1 𝐴 ∈ V
2 funtp.2 𝐵 ∈ V
3 funtp.3 𝐶 ∈ V
4 funtp.4 𝐷 ∈ V
5 funtp.5 𝐸 ∈ V
6 funtp.6 𝐹 ∈ V
7 1 2 4 5 funpr ( 𝐴𝐵 → Fun { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } )
8 3 6 funsn Fun { ⟨ 𝐶 , 𝐹 ⟩ }
9 7 8 jctir ( 𝐴𝐵 → ( Fun { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∧ Fun { ⟨ 𝐶 , 𝐹 ⟩ } ) )
10 4 5 dmprop dom { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } = { 𝐴 , 𝐵 }
11 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
12 10 11 eqtri dom { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } = ( { 𝐴 } ∪ { 𝐵 } )
13 6 dmsnop dom { ⟨ 𝐶 , 𝐹 ⟩ } = { 𝐶 }
14 12 13 ineq12i ( dom { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∩ dom { ⟨ 𝐶 , 𝐹 ⟩ } ) = ( ( { 𝐴 } ∪ { 𝐵 } ) ∩ { 𝐶 } )
15 disjsn2 ( 𝐴𝐶 → ( { 𝐴 } ∩ { 𝐶 } ) = ∅ )
16 disjsn2 ( 𝐵𝐶 → ( { 𝐵 } ∩ { 𝐶 } ) = ∅ )
17 15 16 anim12i ( ( 𝐴𝐶𝐵𝐶 ) → ( ( { 𝐴 } ∩ { 𝐶 } ) = ∅ ∧ ( { 𝐵 } ∩ { 𝐶 } ) = ∅ ) )
18 undisj1 ( ( ( { 𝐴 } ∩ { 𝐶 } ) = ∅ ∧ ( { 𝐵 } ∩ { 𝐶 } ) = ∅ ) ↔ ( ( { 𝐴 } ∪ { 𝐵 } ) ∩ { 𝐶 } ) = ∅ )
19 17 18 sylib ( ( 𝐴𝐶𝐵𝐶 ) → ( ( { 𝐴 } ∪ { 𝐵 } ) ∩ { 𝐶 } ) = ∅ )
20 14 19 eqtrid ( ( 𝐴𝐶𝐵𝐶 ) → ( dom { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∩ dom { ⟨ 𝐶 , 𝐹 ⟩ } ) = ∅ )
21 funun ( ( ( Fun { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∧ Fun { ⟨ 𝐶 , 𝐹 ⟩ } ) ∧ ( dom { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∩ dom { ⟨ 𝐶 , 𝐹 ⟩ } ) = ∅ ) → Fun ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) )
22 9 20 21 syl2an ( ( 𝐴𝐵 ∧ ( 𝐴𝐶𝐵𝐶 ) ) → Fun ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) )
23 22 3impb ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → Fun ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) )
24 df-tp { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } = ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } )
25 24 funeqi ( Fun { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } ↔ Fun ( { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ } ∪ { ⟨ 𝐶 , 𝐹 ⟩ } ) )
26 23 25 sylibr ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → Fun { ⟨ 𝐴 , 𝐷 ⟩ , ⟨ 𝐵 , 𝐸 ⟩ , ⟨ 𝐶 , 𝐹 ⟩ } )