Step |
Hyp |
Ref |
Expression |
1 |
|
funrel |
⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → Rel ( 𝐹 ∪ 𝐺 ) ) |
2 |
|
relun |
⊢ ( Rel ( 𝐹 ∪ 𝐺 ) ↔ ( Rel 𝐹 ∧ Rel 𝐺 ) ) |
3 |
1 2
|
sylib |
⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ( Rel 𝐹 ∧ Rel 𝐺 ) ) |
4 |
|
simpl |
⊢ ( ( Rel 𝐹 ∧ Rel 𝐺 ) → Rel 𝐹 ) |
5 |
|
fununmo |
⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ∃* 𝑦 𝑥 𝐹 𝑦 ) |
6 |
5
|
alrimiv |
⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) |
7 |
4 6
|
anim12i |
⊢ ( ( ( Rel 𝐹 ∧ Rel 𝐺 ) ∧ Fun ( 𝐹 ∪ 𝐺 ) ) → ( Rel 𝐹 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
8 |
|
dffun6 |
⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) |
9 |
7 8
|
sylibr |
⊢ ( ( ( Rel 𝐹 ∧ Rel 𝐺 ) ∧ Fun ( 𝐹 ∪ 𝐺 ) ) → Fun 𝐹 ) |
10 |
|
simpr |
⊢ ( ( Rel 𝐹 ∧ Rel 𝐺 ) → Rel 𝐺 ) |
11 |
|
uncom |
⊢ ( 𝐹 ∪ 𝐺 ) = ( 𝐺 ∪ 𝐹 ) |
12 |
11
|
funeqi |
⊢ ( Fun ( 𝐹 ∪ 𝐺 ) ↔ Fun ( 𝐺 ∪ 𝐹 ) ) |
13 |
|
fununmo |
⊢ ( Fun ( 𝐺 ∪ 𝐹 ) → ∃* 𝑦 𝑥 𝐺 𝑦 ) |
14 |
12 13
|
sylbi |
⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ∃* 𝑦 𝑥 𝐺 𝑦 ) |
15 |
14
|
alrimiv |
⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ∀ 𝑥 ∃* 𝑦 𝑥 𝐺 𝑦 ) |
16 |
10 15
|
anim12i |
⊢ ( ( ( Rel 𝐹 ∧ Rel 𝐺 ) ∧ Fun ( 𝐹 ∪ 𝐺 ) ) → ( Rel 𝐺 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐺 𝑦 ) ) |
17 |
|
dffun6 |
⊢ ( Fun 𝐺 ↔ ( Rel 𝐺 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐺 𝑦 ) ) |
18 |
16 17
|
sylibr |
⊢ ( ( ( Rel 𝐹 ∧ Rel 𝐺 ) ∧ Fun ( 𝐹 ∪ 𝐺 ) ) → Fun 𝐺 ) |
19 |
9 18
|
jca |
⊢ ( ( ( Rel 𝐹 ∧ Rel 𝐺 ) ∧ Fun ( 𝐹 ∪ 𝐺 ) ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) |
20 |
3 19
|
mpancom |
⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ( Fun 𝐹 ∧ Fun 𝐺 ) ) |