| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funrel | ⊢ ( Fun  𝑓  →  Rel  𝑓 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( Fun  𝑓  ∧  ∀ 𝑔  ∈  𝐴 ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  →  Rel  𝑓 ) | 
						
							| 3 | 2 | ralimi | ⊢ ( ∀ 𝑓  ∈  𝐴 ( Fun  𝑓  ∧  ∀ 𝑔  ∈  𝐴 ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  →  ∀ 𝑓  ∈  𝐴 Rel  𝑓 ) | 
						
							| 4 |  | reluni | ⊢ ( Rel  ∪  𝐴  ↔  ∀ 𝑓  ∈  𝐴 Rel  𝑓 ) | 
						
							| 5 | 3 4 | sylibr | ⊢ ( ∀ 𝑓  ∈  𝐴 ( Fun  𝑓  ∧  ∀ 𝑔  ∈  𝐴 ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  →  Rel  ∪  𝐴 ) | 
						
							| 6 |  | r19.28v | ⊢ ( ( Fun  𝑓  ∧  ∀ 𝑔  ∈  𝐴 ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  →  ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) ) ) | 
						
							| 7 | 6 | ralimi | ⊢ ( ∀ 𝑓  ∈  𝐴 ( Fun  𝑓  ∧  ∀ 𝑔  ∈  𝐴 ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  →  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) ) ) | 
						
							| 8 |  | ssel | ⊢ ( 𝑤  ⊆  𝑣  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  →  〈 𝑥 ,  𝑦 〉  ∈  𝑣 ) ) | 
						
							| 9 | 8 | anim1d | ⊢ ( 𝑤  ⊆  𝑣  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑣  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) ) ) | 
						
							| 10 |  | dffun4 | ⊢ ( Fun  𝑣  ↔  ( Rel  𝑣  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑣  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 11 | 10 | simprbi | ⊢ ( Fun  𝑣  →  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑣  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) | 
						
							| 12 | 11 | 19.21bbi | ⊢ ( Fun  𝑣  →  ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑣  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) | 
						
							| 13 | 12 | 19.21bi | ⊢ ( Fun  𝑣  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑣  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) | 
						
							| 14 | 9 13 | syl9r | ⊢ ( Fun  𝑣  →  ( 𝑤  ⊆  𝑣  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( Fun  𝑤  ∧  Fun  𝑣 )  →  ( 𝑤  ⊆  𝑣  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 16 |  | ssel | ⊢ ( 𝑣  ⊆  𝑤  →  ( 〈 𝑥 ,  𝑧 〉  ∈  𝑣  →  〈 𝑥 ,  𝑧 〉  ∈  𝑤 ) ) | 
						
							| 17 | 16 | anim2d | ⊢ ( 𝑣  ⊆  𝑤  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑤 ) ) ) | 
						
							| 18 |  | dffun4 | ⊢ ( Fun  𝑤  ↔  ( Rel  𝑤  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑤 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 19 | 18 | simprbi | ⊢ ( Fun  𝑤  →  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑤 )  →  𝑦  =  𝑧 ) ) | 
						
							| 20 | 19 | 19.21bbi | ⊢ ( Fun  𝑤  →  ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑤 )  →  𝑦  =  𝑧 ) ) | 
						
							| 21 | 20 | 19.21bi | ⊢ ( Fun  𝑤  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑤 )  →  𝑦  =  𝑧 ) ) | 
						
							| 22 | 17 21 | syl9r | ⊢ ( Fun  𝑤  →  ( 𝑣  ⊆  𝑤  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( Fun  𝑤  ∧  Fun  𝑣 )  →  ( 𝑣  ⊆  𝑤  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 24 | 15 23 | jaod | ⊢ ( ( Fun  𝑤  ∧  Fun  𝑣 )  →  ( ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 )  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( ( Fun  𝑤  ∧  Fun  𝑣 )  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) )  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) | 
						
							| 26 | 25 | 2ralimi | ⊢ ( ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( ( Fun  𝑤  ∧  Fun  𝑣 )  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) )  →  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) | 
						
							| 27 |  | funeq | ⊢ ( 𝑓  =  𝑤  →  ( Fun  𝑓  ↔  Fun  𝑤 ) ) | 
						
							| 28 |  | sseq1 | ⊢ ( 𝑓  =  𝑤  →  ( 𝑓  ⊆  𝑔  ↔  𝑤  ⊆  𝑔 ) ) | 
						
							| 29 |  | sseq2 | ⊢ ( 𝑓  =  𝑤  →  ( 𝑔  ⊆  𝑓  ↔  𝑔  ⊆  𝑤 ) ) | 
						
							| 30 | 28 29 | orbi12d | ⊢ ( 𝑓  =  𝑤  →  ( ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 )  ↔  ( 𝑤  ⊆  𝑔  ∨  𝑔  ⊆  𝑤 ) ) ) | 
						
							| 31 | 27 30 | anbi12d | ⊢ ( 𝑓  =  𝑤  →  ( ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  ↔  ( Fun  𝑤  ∧  ( 𝑤  ⊆  𝑔  ∨  𝑔  ⊆  𝑤 ) ) ) ) | 
						
							| 32 |  | sseq2 | ⊢ ( 𝑔  =  𝑣  →  ( 𝑤  ⊆  𝑔  ↔  𝑤  ⊆  𝑣 ) ) | 
						
							| 33 |  | sseq1 | ⊢ ( 𝑔  =  𝑣  →  ( 𝑔  ⊆  𝑤  ↔  𝑣  ⊆  𝑤 ) ) | 
						
							| 34 | 32 33 | orbi12d | ⊢ ( 𝑔  =  𝑣  →  ( ( 𝑤  ⊆  𝑔  ∨  𝑔  ⊆  𝑤 )  ↔  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) | 
						
							| 35 | 34 | anbi2d | ⊢ ( 𝑔  =  𝑣  →  ( ( Fun  𝑤  ∧  ( 𝑤  ⊆  𝑔  ∨  𝑔  ⊆  𝑤 ) )  ↔  ( Fun  𝑤  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) ) | 
						
							| 36 | 31 35 | cbvral2vw | ⊢ ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( Fun  𝑤  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) | 
						
							| 37 |  | ralcom | ⊢ ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  ↔  ∀ 𝑔  ∈  𝐴 ∀ 𝑓  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) ) ) | 
						
							| 38 |  | orcom | ⊢ ( ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 )  ↔  ( 𝑔  ⊆  𝑓  ∨  𝑓  ⊆  𝑔 ) ) | 
						
							| 39 |  | sseq1 | ⊢ ( 𝑔  =  𝑤  →  ( 𝑔  ⊆  𝑓  ↔  𝑤  ⊆  𝑓 ) ) | 
						
							| 40 |  | sseq2 | ⊢ ( 𝑔  =  𝑤  →  ( 𝑓  ⊆  𝑔  ↔  𝑓  ⊆  𝑤 ) ) | 
						
							| 41 | 39 40 | orbi12d | ⊢ ( 𝑔  =  𝑤  →  ( ( 𝑔  ⊆  𝑓  ∨  𝑓  ⊆  𝑔 )  ↔  ( 𝑤  ⊆  𝑓  ∨  𝑓  ⊆  𝑤 ) ) ) | 
						
							| 42 | 38 41 | bitrid | ⊢ ( 𝑔  =  𝑤  →  ( ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 )  ↔  ( 𝑤  ⊆  𝑓  ∨  𝑓  ⊆  𝑤 ) ) ) | 
						
							| 43 | 42 | anbi2d | ⊢ ( 𝑔  =  𝑤  →  ( ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  ↔  ( Fun  𝑓  ∧  ( 𝑤  ⊆  𝑓  ∨  𝑓  ⊆  𝑤 ) ) ) ) | 
						
							| 44 |  | funeq | ⊢ ( 𝑓  =  𝑣  →  ( Fun  𝑓  ↔  Fun  𝑣 ) ) | 
						
							| 45 |  | sseq2 | ⊢ ( 𝑓  =  𝑣  →  ( 𝑤  ⊆  𝑓  ↔  𝑤  ⊆  𝑣 ) ) | 
						
							| 46 |  | sseq1 | ⊢ ( 𝑓  =  𝑣  →  ( 𝑓  ⊆  𝑤  ↔  𝑣  ⊆  𝑤 ) ) | 
						
							| 47 | 45 46 | orbi12d | ⊢ ( 𝑓  =  𝑣  →  ( ( 𝑤  ⊆  𝑓  ∨  𝑓  ⊆  𝑤 )  ↔  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) | 
						
							| 48 | 44 47 | anbi12d | ⊢ ( 𝑓  =  𝑣  →  ( ( Fun  𝑓  ∧  ( 𝑤  ⊆  𝑓  ∨  𝑓  ⊆  𝑤 ) )  ↔  ( Fun  𝑣  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) ) | 
						
							| 49 | 43 48 | cbvral2vw | ⊢ ( ∀ 𝑔  ∈  𝐴 ∀ 𝑓  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( Fun  𝑣  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) | 
						
							| 50 | 37 49 | bitri | ⊢ ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( Fun  𝑣  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) | 
						
							| 51 | 36 50 | anbi12i | ⊢ ( ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  ∧  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) ) )  ↔  ( ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( Fun  𝑤  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) )  ∧  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( Fun  𝑣  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) ) | 
						
							| 52 |  | anidm | ⊢ ( ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  ∧  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) ) )  ↔  ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) ) ) | 
						
							| 53 |  | anandir | ⊢ ( ( ( Fun  𝑤  ∧  Fun  𝑣 )  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) )  ↔  ( ( Fun  𝑤  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) )  ∧  ( Fun  𝑣  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) ) | 
						
							| 54 | 53 | 2ralbii | ⊢ ( ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( ( Fun  𝑤  ∧  Fun  𝑣 )  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( ( Fun  𝑤  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) )  ∧  ( Fun  𝑣  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) ) | 
						
							| 55 |  | r19.26-2 | ⊢ ( ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( ( Fun  𝑤  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) )  ∧  ( Fun  𝑣  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) )  ↔  ( ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( Fun  𝑤  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) )  ∧  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( Fun  𝑣  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) ) | 
						
							| 56 | 54 55 | bitr2i | ⊢ ( ( ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( Fun  𝑤  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) )  ∧  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( Fun  𝑣  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( ( Fun  𝑤  ∧  Fun  𝑣 )  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) | 
						
							| 57 | 51 52 56 | 3bitr3i | ⊢ ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( ( Fun  𝑤  ∧  Fun  𝑣 )  ∧  ( 𝑤  ⊆  𝑣  ∨  𝑣  ⊆  𝑤 ) ) ) | 
						
							| 58 |  | eluni | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ↔  ∃ 𝑤 ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  𝑤  ∈  𝐴 ) ) | 
						
							| 59 |  | eluni | ⊢ ( 〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴  ↔  ∃ 𝑣 ( 〈 𝑥 ,  𝑧 〉  ∈  𝑣  ∧  𝑣  ∈  𝐴 ) ) | 
						
							| 60 | 58 59 | anbi12i | ⊢ ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  ↔  ( ∃ 𝑤 ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  𝑤  ∈  𝐴 )  ∧  ∃ 𝑣 ( 〈 𝑥 ,  𝑧 〉  ∈  𝑣  ∧  𝑣  ∈  𝐴 ) ) ) | 
						
							| 61 |  | exdistrv | ⊢ ( ∃ 𝑤 ∃ 𝑣 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  𝑤  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑧 〉  ∈  𝑣  ∧  𝑣  ∈  𝐴 ) )  ↔  ( ∃ 𝑤 ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  𝑤  ∈  𝐴 )  ∧  ∃ 𝑣 ( 〈 𝑥 ,  𝑧 〉  ∈  𝑣  ∧  𝑣  ∈  𝐴 ) ) ) | 
						
							| 62 |  | an4 | ⊢ ( ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  𝑤  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑧 〉  ∈  𝑣  ∧  𝑣  ∈  𝐴 ) )  ↔  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  ∧  ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 ) ) ) | 
						
							| 63 | 62 | biancomi | ⊢ ( ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  𝑤  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑧 〉  ∈  𝑣  ∧  𝑣  ∈  𝐴 ) )  ↔  ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) ) ) | 
						
							| 64 | 63 | 2exbii | ⊢ ( ∃ 𝑤 ∃ 𝑣 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  𝑤  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑧 〉  ∈  𝑣  ∧  𝑣  ∈  𝐴 ) )  ↔  ∃ 𝑤 ∃ 𝑣 ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) ) ) | 
						
							| 65 | 60 61 64 | 3bitr2i | ⊢ ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  ↔  ∃ 𝑤 ∃ 𝑣 ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) ) ) | 
						
							| 66 | 65 | imbi1i | ⊢ ( ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 )  ↔  ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) )  →  𝑦  =  𝑧 ) ) | 
						
							| 67 |  | 19.23v | ⊢ ( ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) )  →  𝑦  =  𝑧 )  ↔  ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) )  →  𝑦  =  𝑧 ) ) | 
						
							| 68 |  | r2al | ⊢ ( ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑤 ∀ 𝑣 ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 69 |  | impexp | ⊢ ( ( ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) )  →  𝑦  =  𝑧 )  ↔  ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 70 | 69 | 2albii | ⊢ ( ∀ 𝑤 ∀ 𝑣 ( ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑤 ∀ 𝑣 ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 71 |  | 19.23v | ⊢ ( ∀ 𝑣 ( ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) )  →  𝑦  =  𝑧 )  ↔  ( ∃ 𝑣 ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) )  →  𝑦  =  𝑧 ) ) | 
						
							| 72 | 71 | albii | ⊢ ( ∀ 𝑤 ∀ 𝑣 ( ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) )  →  𝑦  =  𝑧 ) ) | 
						
							| 73 | 68 70 72 | 3bitr2ri | ⊢ ( ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤  ∈  𝐴  ∧  𝑣  ∈  𝐴 )  ∧  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 ) )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) | 
						
							| 74 | 66 67 73 | 3bitr2i | ⊢ ( ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 )  ↔  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 ( ( 〈 𝑥 ,  𝑦 〉  ∈  𝑤  ∧  〈 𝑥 ,  𝑧 〉  ∈  𝑣 )  →  𝑦  =  𝑧 ) ) | 
						
							| 75 | 26 57 74 | 3imtr4i | ⊢ ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  →  ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 ) ) | 
						
							| 76 | 75 | alrimiv | ⊢ ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  →  ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 ) ) | 
						
							| 77 | 76 | alrimivv | ⊢ ( ∀ 𝑓  ∈  𝐴 ∀ 𝑔  ∈  𝐴 ( Fun  𝑓  ∧  ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  →  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 ) ) | 
						
							| 78 | 7 77 | syl | ⊢ ( ∀ 𝑓  ∈  𝐴 ( Fun  𝑓  ∧  ∀ 𝑔  ∈  𝐴 ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  →  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 ) ) | 
						
							| 79 |  | dffun4 | ⊢ ( Fun  ∪  𝐴  ↔  ( Rel  ∪  𝐴  ∧  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝐴  ∧  〈 𝑥 ,  𝑧 〉  ∈  ∪  𝐴 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 80 | 5 78 79 | sylanbrc | ⊢ ( ∀ 𝑓  ∈  𝐴 ( Fun  𝑓  ∧  ∀ 𝑔  ∈  𝐴 ( 𝑓  ⊆  𝑔  ∨  𝑔  ⊆  𝑓 ) )  →  Fun  ∪  𝐴 ) |