Metamath Proof Explorer


Theorem funvtxval0

Description: The set of vertices of an extensible structure with a base set and (at least) another slot. (Contributed by AV, 22-Sep-2020) (Revised by AV, 7-Jun-2021) (Revised by AV, 12-Nov-2021)

Ref Expression
Hypothesis funvtxval0.s 𝑆 ∈ V
Assertion funvtxval0 ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝑆 ≠ ( Base ‘ ndx ) ∧ { ( Base ‘ ndx ) , 𝑆 } ⊆ dom 𝐺 ) → ( Vtx ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 funvtxval0.s 𝑆 ∈ V
2 necom ( 𝑆 ≠ ( Base ‘ ndx ) ↔ ( Base ‘ ndx ) ≠ 𝑆 )
3 fvex ( Base ‘ ndx ) ∈ V
4 3 1 funvtxdm2val ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ ( Base ‘ ndx ) ≠ 𝑆 ∧ { ( Base ‘ ndx ) , 𝑆 } ⊆ dom 𝐺 ) → ( Vtx ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )
5 2 4 syl3an2b ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝑆 ≠ ( Base ‘ ndx ) ∧ { ( Base ‘ ndx ) , 𝑆 } ⊆ dom 𝐺 ) → ( Vtx ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )