Database
GRAPH THEORY
Vertices and edges
Vertices and indexed edges
The vertices and edges of a graph represented as extensible structure
funvtxval0
Metamath Proof Explorer
Description: The set of vertices of an extensible structure with a base set and (at
least) another slot. (Contributed by AV , 22-Sep-2020) (Revised by AV , 7-Jun-2021) (Revised by AV , 12-Nov-2021)
Ref
Expression
Hypothesis
funvtxval0.s
⊢ 𝑆 ∈ V
Assertion
funvtxval0
⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝑆 ≠ ( Base ‘ ndx ) ∧ { ( Base ‘ ndx ) , 𝑆 } ⊆ dom 𝐺 ) → ( Vtx ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )
Proof
Step
Hyp
Ref
Expression
1
funvtxval0.s
⊢ 𝑆 ∈ V
2
necom
⊢ ( 𝑆 ≠ ( Base ‘ ndx ) ↔ ( Base ‘ ndx ) ≠ 𝑆 )
3
fvex
⊢ ( Base ‘ ndx ) ∈ V
4
3 1
funvtxdm2val
⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ ( Base ‘ ndx ) ≠ 𝑆 ∧ { ( Base ‘ ndx ) , 𝑆 } ⊆ dom 𝐺 ) → ( Vtx ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )
5
2 4
syl3an2b
⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 𝑆 ≠ ( Base ‘ ndx ) ∧ { ( Base ‘ ndx ) , 𝑆 } ⊆ dom 𝐺 ) → ( Vtx ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )