Step |
Hyp |
Ref |
Expression |
1 |
|
fusgredgfi.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
fusgredgfi.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
4 |
|
rabexg |
⊢ ( 𝐸 ∈ V → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ V ) |
5 |
3 4
|
mp1i |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ V ) |
6 |
1
|
isfusgr |
⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
7 |
|
hashcl |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
8 |
6 7
|
simplbiim |
⊢ ( 𝐺 ∈ FinUSGraph → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
10 |
|
fusgrusgr |
⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) |
11 |
1 2
|
usgredgleord |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) ) |
12 |
10 11
|
sylan |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) ) |
13 |
|
hashbnd |
⊢ ( ( { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ V ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ) |
14 |
5 9 12 13
|
syl3anc |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } ∈ Fin ) |