Step |
Hyp |
Ref |
Expression |
1 |
|
frgrhash2wsp.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
fusgreg2wsp.m |
⊢ 𝑀 = ( 𝑎 ∈ 𝑉 ↦ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑎 } ) |
3 |
|
wspthsswwlkn |
⊢ ( 2 WSPathsN 𝐺 ) ⊆ ( 2 WWalksN 𝐺 ) |
4 |
3
|
sseli |
⊢ ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) → 𝑝 ∈ ( 2 WWalksN 𝐺 ) ) |
5 |
1
|
midwwlks2s3 |
⊢ ( 𝑝 ∈ ( 2 WWalksN 𝐺 ) → ∃ 𝑥 ∈ 𝑉 ( 𝑝 ‘ 1 ) = 𝑥 ) |
6 |
4 5
|
syl |
⊢ ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) → ∃ 𝑥 ∈ 𝑉 ( 𝑝 ‘ 1 ) = 𝑥 ) |
7 |
6
|
a1i |
⊢ ( 𝐺 ∈ FinUSGraph → ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) → ∃ 𝑥 ∈ 𝑉 ( 𝑝 ‘ 1 ) = 𝑥 ) ) |
8 |
7
|
pm4.71rd |
⊢ ( 𝐺 ∈ FinUSGraph → ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝑝 ‘ 1 ) = 𝑥 ∧ 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ) ) ) |
9 |
|
ancom |
⊢ ( ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑥 ) ↔ ( ( 𝑝 ‘ 1 ) = 𝑥 ∧ 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ) ) |
10 |
9
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝑉 ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑉 ( ( 𝑝 ‘ 1 ) = 𝑥 ∧ 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ) ) |
11 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ 𝑉 ( ( 𝑝 ‘ 1 ) = 𝑥 ∧ 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ) ↔ ( ∃ 𝑥 ∈ 𝑉 ( 𝑝 ‘ 1 ) = 𝑥 ∧ 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ) ) |
12 |
10 11
|
bitr2i |
⊢ ( ( ∃ 𝑥 ∈ 𝑉 ( 𝑝 ‘ 1 ) = 𝑥 ∧ 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ) ↔ ∃ 𝑥 ∈ 𝑉 ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑥 ) ) |
13 |
12
|
a1i |
⊢ ( 𝐺 ∈ FinUSGraph → ( ( ∃ 𝑥 ∈ 𝑉 ( 𝑝 ‘ 1 ) = 𝑥 ∧ 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ) ↔ ∃ 𝑥 ∈ 𝑉 ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑥 ) ) ) |
14 |
1 2
|
fusgreg2wsplem |
⊢ ( 𝑥 ∈ 𝑉 → ( 𝑝 ∈ ( 𝑀 ‘ 𝑥 ) ↔ ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑥 ) ) ) |
15 |
14
|
bicomd |
⊢ ( 𝑥 ∈ 𝑉 → ( ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑥 ) ↔ 𝑝 ∈ ( 𝑀 ‘ 𝑥 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑥 ) ↔ 𝑝 ∈ ( 𝑀 ‘ 𝑥 ) ) ) |
17 |
16
|
rexbidva |
⊢ ( 𝐺 ∈ FinUSGraph → ( ∃ 𝑥 ∈ 𝑉 ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑉 𝑝 ∈ ( 𝑀 ‘ 𝑥 ) ) ) |
18 |
8 13 17
|
3bitrd |
⊢ ( 𝐺 ∈ FinUSGraph → ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ↔ ∃ 𝑥 ∈ 𝑉 𝑝 ∈ ( 𝑀 ‘ 𝑥 ) ) ) |
19 |
|
eliun |
⊢ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝑉 ( 𝑀 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑉 𝑝 ∈ ( 𝑀 ‘ 𝑥 ) ) |
20 |
18 19
|
bitr4di |
⊢ ( 𝐺 ∈ FinUSGraph → ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ↔ 𝑝 ∈ ∪ 𝑥 ∈ 𝑉 ( 𝑀 ‘ 𝑥 ) ) ) |
21 |
20
|
eqrdv |
⊢ ( 𝐺 ∈ FinUSGraph → ( 2 WSPathsN 𝐺 ) = ∪ 𝑥 ∈ 𝑉 ( 𝑀 ‘ 𝑥 ) ) |