Step |
Hyp |
Ref |
Expression |
1 |
|
frgrhash2wsp.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
fusgreg2wsp.m |
⊢ 𝑀 = ( 𝑎 ∈ 𝑉 ↦ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑎 } ) |
3 |
|
eqeq2 |
⊢ ( 𝑎 = 𝑁 → ( ( 𝑤 ‘ 1 ) = 𝑎 ↔ ( 𝑤 ‘ 1 ) = 𝑁 ) ) |
4 |
3
|
rabbidv |
⊢ ( 𝑎 = 𝑁 → { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑎 } = { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ) |
5 |
|
ovex |
⊢ ( 2 WSPathsN 𝐺 ) ∈ V |
6 |
5
|
rabex |
⊢ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ∈ V |
7 |
4 2 6
|
fvmpt |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑀 ‘ 𝑁 ) = { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ) |
8 |
7
|
eleq2d |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑝 ∈ ( 𝑀 ‘ 𝑁 ) ↔ 𝑝 ∈ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ) ) |
9 |
|
fveq1 |
⊢ ( 𝑤 = 𝑝 → ( 𝑤 ‘ 1 ) = ( 𝑝 ‘ 1 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑤 = 𝑝 → ( ( 𝑤 ‘ 1 ) = 𝑁 ↔ ( 𝑝 ‘ 1 ) = 𝑁 ) ) |
11 |
10
|
elrab |
⊢ ( 𝑝 ∈ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ↔ ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑁 ) ) |
12 |
8 11
|
bitrdi |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑝 ∈ ( 𝑀 ‘ 𝑁 ) ↔ ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑁 ) ) ) |