Metamath Proof Explorer


Theorem fusgreg2wsplem

Description: Lemma for fusgreg2wsp and related theorems. (Contributed by AV, 8-Jan-2022)

Ref Expression
Hypotheses frgrhash2wsp.v 𝑉 = ( Vtx ‘ 𝐺 )
fusgreg2wsp.m 𝑀 = ( 𝑎𝑉 ↦ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑎 } )
Assertion fusgreg2wsplem ( 𝑁𝑉 → ( 𝑝 ∈ ( 𝑀𝑁 ) ↔ ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 frgrhash2wsp.v 𝑉 = ( Vtx ‘ 𝐺 )
2 fusgreg2wsp.m 𝑀 = ( 𝑎𝑉 ↦ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑎 } )
3 eqeq2 ( 𝑎 = 𝑁 → ( ( 𝑤 ‘ 1 ) = 𝑎 ↔ ( 𝑤 ‘ 1 ) = 𝑁 ) )
4 3 rabbidv ( 𝑎 = 𝑁 → { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑎 } = { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } )
5 ovex ( 2 WSPathsN 𝐺 ) ∈ V
6 5 rabex { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ∈ V
7 4 2 6 fvmpt ( 𝑁𝑉 → ( 𝑀𝑁 ) = { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } )
8 7 eleq2d ( 𝑁𝑉 → ( 𝑝 ∈ ( 𝑀𝑁 ) ↔ 𝑝 ∈ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ) )
9 fveq1 ( 𝑤 = 𝑝 → ( 𝑤 ‘ 1 ) = ( 𝑝 ‘ 1 ) )
10 9 eqeq1d ( 𝑤 = 𝑝 → ( ( 𝑤 ‘ 1 ) = 𝑁 ↔ ( 𝑝 ‘ 1 ) = 𝑁 ) )
11 10 elrab ( 𝑝 ∈ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ↔ ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑁 ) )
12 8 11 bitrdi ( 𝑁𝑉 → ( 𝑝 ∈ ( 𝑀𝑁 ) ↔ ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑁 ) ) )