| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrhash2wsp.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
fusgreg2wsp.m |
⊢ 𝑀 = ( 𝑎 ∈ 𝑉 ↦ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑎 } ) |
| 3 |
|
eqeq2 |
⊢ ( 𝑎 = 𝑁 → ( ( 𝑤 ‘ 1 ) = 𝑎 ↔ ( 𝑤 ‘ 1 ) = 𝑁 ) ) |
| 4 |
3
|
rabbidv |
⊢ ( 𝑎 = 𝑁 → { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑎 } = { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ) |
| 5 |
|
ovex |
⊢ ( 2 WSPathsN 𝐺 ) ∈ V |
| 6 |
5
|
rabex |
⊢ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ∈ V |
| 7 |
4 2 6
|
fvmpt |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑀 ‘ 𝑁 ) = { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ) |
| 8 |
7
|
eleq2d |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑝 ∈ ( 𝑀 ‘ 𝑁 ) ↔ 𝑝 ∈ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ) ) |
| 9 |
|
fveq1 |
⊢ ( 𝑤 = 𝑝 → ( 𝑤 ‘ 1 ) = ( 𝑝 ‘ 1 ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑤 = 𝑝 → ( ( 𝑤 ‘ 1 ) = 𝑁 ↔ ( 𝑝 ‘ 1 ) = 𝑁 ) ) |
| 11 |
10
|
elrab |
⊢ ( 𝑝 ∈ { 𝑤 ∈ ( 2 WSPathsN 𝐺 ) ∣ ( 𝑤 ‘ 1 ) = 𝑁 } ↔ ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑁 ) ) |
| 12 |
8 11
|
bitrdi |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑝 ∈ ( 𝑀 ‘ 𝑁 ) ↔ ( 𝑝 ∈ ( 2 WSPathsN 𝐺 ) ∧ ( 𝑝 ‘ 1 ) = 𝑁 ) ) ) |