Step |
Hyp |
Ref |
Expression |
1 |
|
residfi |
⊢ ( ( I ↾ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ) ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ∈ Fin ) |
2 |
|
fusgrusgr |
⊢ ( 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph → 〈 𝑉 , 𝐸 〉 ∈ USGraph ) |
3 |
|
eqid |
⊢ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) |
4 |
|
eqid |
⊢ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) = ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) |
5 |
3 4
|
usgredgffibi |
⊢ ( 〈 𝑉 , 𝐸 〉 ∈ USGraph → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ) |
6 |
2 5
|
syl |
⊢ ( 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ) ) |
8 |
|
simp2 |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ) |
9 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = 𝑉 ) |
10 |
9
|
eqcomd |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝑉 = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ) |
11 |
10
|
eleq2d |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝑁 ∈ 𝑉 ↔ 𝑁 ∈ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ) ) |
12 |
11
|
biimpa |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 𝑁 ∈ 𝑉 ) → 𝑁 ∈ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ) |
13 |
|
eqid |
⊢ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) = ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) |
14 |
|
eqid |
⊢ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } = { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } |
15 |
13 4 14
|
usgrfilem |
⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ 〈 𝑉 , 𝐸 〉 ) ) → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ∈ Fin ) ) |
16 |
8 12 15
|
3imp3i2an |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ∈ Fin ) ) |
17 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) = 𝐸 ) |
18 |
17
|
eleq1d |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ 𝐸 ∈ Fin ) ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( iEdg ‘ 〈 𝑉 , 𝐸 〉 ) ∈ Fin ↔ 𝐸 ∈ Fin ) ) |
20 |
7 16 19
|
3bitr3rd |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ∈ Fin ) ) |
21 |
20
|
biimprd |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ∈ Fin → 𝐸 ∈ Fin ) ) |
22 |
1 21
|
syl5bi |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) ∧ 〈 𝑉 , 𝐸 〉 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( I ↾ { 𝑝 ∈ ( Edg ‘ 〈 𝑉 , 𝐸 〉 ) ∣ 𝑁 ∉ 𝑝 } ) ∈ Fin → 𝐸 ∈ Fin ) ) |