Metamath Proof Explorer


Theorem fusgrfisstep

Description: Induction step in fusgrfis : In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 23-Oct-2020)

Ref Expression
Assertion fusgrfisstep ( ( ( 𝑉𝑋𝐸𝑌 ) ∧ ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph ∧ 𝑁𝑉 ) → ( ( I ↾ { 𝑝 ∈ ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∣ 𝑁𝑝 } ) ∈ Fin → 𝐸 ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 residfi ( ( I ↾ { 𝑝 ∈ ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∣ 𝑁𝑝 } ) ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∣ 𝑁𝑝 } ∈ Fin )
2 fusgrusgr ( ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph → ⟨ 𝑉 , 𝐸 ⟩ ∈ USGraph )
3 eqid ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ )
4 eqid ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ )
5 3 4 usgredgffibi ( ⟨ 𝑉 , 𝐸 ⟩ ∈ USGraph → ( ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∈ Fin ↔ ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∈ Fin ) )
6 2 5 syl ( ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph → ( ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∈ Fin ↔ ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∈ Fin ) )
7 6 3ad2ant2 ( ( ( 𝑉𝑋𝐸𝑌 ) ∧ ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph ∧ 𝑁𝑉 ) → ( ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∈ Fin ↔ ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∈ Fin ) )
8 simp2 ( ( ( 𝑉𝑋𝐸𝑌 ) ∧ ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph ∧ 𝑁𝑉 ) → ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph )
9 opvtxfv ( ( 𝑉𝑋𝐸𝑌 ) → ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = 𝑉 )
10 9 eqcomd ( ( 𝑉𝑋𝐸𝑌 ) → 𝑉 = ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) )
11 10 eleq2d ( ( 𝑉𝑋𝐸𝑌 ) → ( 𝑁𝑉𝑁 ∈ ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ) )
12 11 biimpa ( ( ( 𝑉𝑋𝐸𝑌 ) ∧ 𝑁𝑉 ) → 𝑁 ∈ ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) )
13 eqid ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ )
14 eqid { 𝑝 ∈ ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∣ 𝑁𝑝 } = { 𝑝 ∈ ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∣ 𝑁𝑝 }
15 13 4 14 usgrfilem ( ( ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph ∧ 𝑁 ∈ ( Vtx ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ) → ( ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∣ 𝑁𝑝 } ∈ Fin ) )
16 8 12 15 3imp3i2an ( ( ( 𝑉𝑋𝐸𝑌 ) ∧ ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph ∧ 𝑁𝑉 ) → ( ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∣ 𝑁𝑝 } ∈ Fin ) )
17 opiedgfv ( ( 𝑉𝑋𝐸𝑌 ) → ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) = 𝐸 )
18 17 eleq1d ( ( 𝑉𝑋𝐸𝑌 ) → ( ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∈ Fin ↔ 𝐸 ∈ Fin ) )
19 18 3ad2ant1 ( ( ( 𝑉𝑋𝐸𝑌 ) ∧ ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph ∧ 𝑁𝑉 ) → ( ( iEdg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∈ Fin ↔ 𝐸 ∈ Fin ) )
20 7 16 19 3bitr3rd ( ( ( 𝑉𝑋𝐸𝑌 ) ∧ ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph ∧ 𝑁𝑉 ) → ( 𝐸 ∈ Fin ↔ { 𝑝 ∈ ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∣ 𝑁𝑝 } ∈ Fin ) )
21 20 biimprd ( ( ( 𝑉𝑋𝐸𝑌 ) ∧ ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph ∧ 𝑁𝑉 ) → ( { 𝑝 ∈ ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∣ 𝑁𝑝 } ∈ Fin → 𝐸 ∈ Fin ) )
22 1 21 syl5bi ( ( ( 𝑉𝑋𝐸𝑌 ) ∧ ⟨ 𝑉 , 𝐸 ⟩ ∈ FinUSGraph ∧ 𝑁𝑉 ) → ( ( I ↾ { 𝑝 ∈ ( Edg ‘ ⟨ 𝑉 , 𝐸 ⟩ ) ∣ 𝑁𝑝 } ) ∈ Fin → 𝐸 ∈ Fin ) )