Metamath Proof Explorer


Theorem fusgrfupgrfs

Description: A finite simple graph is a finite pseudograph of finite size. (Contributed by AV, 27-Dec-2021)

Ref Expression
Hypotheses fusgrfupgrfs.v 𝑉 = ( Vtx ‘ 𝐺 )
fusgrfupgrfs.i 𝐼 = ( iEdg ‘ 𝐺 )
Assertion fusgrfupgrfs ( 𝐺 ∈ FinUSGraph → ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 fusgrfupgrfs.v 𝑉 = ( Vtx ‘ 𝐺 )
2 fusgrfupgrfs.i 𝐼 = ( iEdg ‘ 𝐺 )
3 fusgrusgr ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph )
4 usgrupgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph )
5 3 4 syl ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ UPGraph )
6 1 fusgrvtxfi ( 𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin )
7 fusgrfis ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin )
8 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
9 2 8 usgredgffibi ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ 𝐼 ∈ Fin ) )
10 3 9 syl ( 𝐺 ∈ FinUSGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ 𝐼 ∈ Fin ) )
11 7 10 mpbid ( 𝐺 ∈ FinUSGraph → 𝐼 ∈ Fin )
12 5 6 11 3jca ( 𝐺 ∈ FinUSGraph → ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) )