Step |
Hyp |
Ref |
Expression |
1 |
|
fusgrfupgrfs.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
fusgrfupgrfs.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
fusgrusgr |
⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) |
4 |
|
usgrupgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) |
5 |
3 4
|
syl |
⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ UPGraph ) |
6 |
1
|
fusgrvtxfi |
⊢ ( 𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin ) |
7 |
|
fusgrfis |
⊢ ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin ) |
8 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
9 |
2 8
|
usgredgffibi |
⊢ ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ 𝐼 ∈ Fin ) ) |
10 |
3 9
|
syl |
⊢ ( 𝐺 ∈ FinUSGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ 𝐼 ∈ Fin ) ) |
11 |
7 10
|
mpbid |
⊢ ( 𝐺 ∈ FinUSGraph → 𝐼 ∈ Fin ) |
12 |
5 6 11
|
3jca |
⊢ ( 𝐺 ∈ FinUSGraph → ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ) |