Step |
Hyp |
Ref |
Expression |
1 |
|
fusgrn0degnn0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
n0 |
⊢ ( 𝑉 ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ 𝑉 ) |
3 |
1
|
vtxdgfusgr |
⊢ ( 𝐺 ∈ FinUSGraph → ∀ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 ) |
4 |
|
fveq2 |
⊢ ( 𝑢 = 𝑘 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑢 = 𝑘 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 ) ) |
6 |
5
|
rspcv |
⊢ ( 𝑘 ∈ 𝑉 → ( ∀ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 ) ) |
7 |
|
risset |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 ↔ ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) |
8 |
|
fveqeq2 |
⊢ ( 𝑣 = 𝑘 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) = 𝑛 ) ) |
9 |
|
eqcom |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) = 𝑛 ↔ 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) |
10 |
8 9
|
bitrdi |
⊢ ( 𝑣 = 𝑘 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ↔ 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑣 = 𝑘 → ( ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ↔ ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
12 |
11
|
rspcev |
⊢ ( ( 𝑘 ∈ 𝑉 ∧ ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ) → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) |
13 |
12
|
expcom |
⊢ ( ∃ 𝑛 ∈ ℕ0 𝑛 = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) → ( 𝑘 ∈ 𝑉 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
14 |
7 13
|
sylbi |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 → ( 𝑘 ∈ 𝑉 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
15 |
14
|
com12 |
⊢ ( 𝑘 ∈ 𝑉 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑘 ) ∈ ℕ0 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
16 |
6 15
|
syld |
⊢ ( 𝑘 ∈ 𝑉 → ( ∀ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
17 |
3 16
|
syl5 |
⊢ ( 𝑘 ∈ 𝑉 → ( 𝐺 ∈ FinUSGraph → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
18 |
17
|
exlimiv |
⊢ ( ∃ 𝑘 𝑘 ∈ 𝑉 → ( 𝐺 ∈ FinUSGraph → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
19 |
2 18
|
sylbi |
⊢ ( 𝑉 ≠ ∅ → ( 𝐺 ∈ FinUSGraph → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) ) |
20 |
19
|
impcom |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑉 ∃ 𝑛 ∈ ℕ0 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝑛 ) |