Step |
Hyp |
Ref |
Expression |
1 |
|
isrusgr0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isrusgr0.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
3 |
1
|
vtxdgfusgr |
⊢ ( 𝐺 ∈ FinUSGraph → ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ) |
4 |
|
r19.26 |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ↔ ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) ) |
5 |
2
|
fveq1i |
⊢ ( 𝐷 ‘ 𝑣 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) |
6 |
5
|
eqeq1i |
⊢ ( ( 𝐷 ‘ 𝑣 ) = 𝐾 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) |
7 |
|
eleq1 |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ↔ 𝐾 ∈ ℕ0 ) ) |
8 |
6 7
|
sylbi |
⊢ ( ( 𝐷 ‘ 𝑣 ) = 𝐾 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ↔ 𝐾 ∈ ℕ0 ) ) |
9 |
8
|
biimpac |
⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐷 ‘ 𝑣 ) = 𝐾 ) → 𝐾 ∈ ℕ0 ) |
10 |
9
|
ralimi |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐷 ‘ 𝑣 ) = 𝐾 ) → ∀ 𝑣 ∈ 𝑉 𝐾 ∈ ℕ0 ) |
11 |
|
rspn0 |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑣 ∈ 𝑉 𝐾 ∈ ℕ0 → 𝐾 ∈ ℕ0 ) ) |
12 |
10 11
|
syl5com |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐷 ‘ 𝑣 ) = 𝐾 ) → ( 𝑉 ≠ ∅ → 𝐾 ∈ ℕ0 ) ) |
13 |
4 12
|
sylbir |
⊢ ( ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 ) → ( 𝑉 ≠ ∅ → 𝐾 ∈ ℕ0 ) ) |
14 |
13
|
ex |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 → ( 𝑉 ≠ ∅ → 𝐾 ∈ ℕ0 ) ) ) |
15 |
14
|
com23 |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 → ( 𝑉 ≠ ∅ → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 → 𝐾 ∈ ℕ0 ) ) ) |
16 |
3 15
|
syl |
⊢ ( 𝐺 ∈ FinUSGraph → ( 𝑉 ≠ ∅ → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 → 𝐾 ∈ ℕ0 ) ) ) |
17 |
16
|
imp |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = 𝐾 → 𝐾 ∈ ℕ0 ) ) |