Metamath Proof Explorer


Theorem fusgrregdegfi

Description: In a nonempty finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 6-Mar-2018) (Revised by AV, 19-Dec-2020)

Ref Expression
Hypotheses isrusgr0.v 𝑉 = ( Vtx ‘ 𝐺 )
isrusgr0.d 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion fusgrregdegfi ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾𝐾 ∈ ℕ0 ) )

Proof

Step Hyp Ref Expression
1 isrusgr0.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isrusgr0.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 1 vtxdgfusgr ( 𝐺 ∈ FinUSGraph → ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 )
4 r19.26 ( ∀ 𝑣𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐷𝑣 ) = 𝐾 ) ↔ ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) )
5 2 fveq1i ( 𝐷𝑣 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )
6 5 eqeq1i ( ( 𝐷𝑣 ) = 𝐾 ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 )
7 eleq1 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0𝐾 ∈ ℕ0 ) )
8 6 7 sylbi ( ( 𝐷𝑣 ) = 𝐾 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0𝐾 ∈ ℕ0 ) )
9 8 biimpac ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐷𝑣 ) = 𝐾 ) → 𝐾 ∈ ℕ0 )
10 9 ralimi ( ∀ 𝑣𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐷𝑣 ) = 𝐾 ) → ∀ 𝑣𝑉 𝐾 ∈ ℕ0 )
11 rspn0 ( 𝑉 ≠ ∅ → ( ∀ 𝑣𝑉 𝐾 ∈ ℕ0𝐾 ∈ ℕ0 ) )
12 10 11 syl5com ( ∀ 𝑣𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐷𝑣 ) = 𝐾 ) → ( 𝑉 ≠ ∅ → 𝐾 ∈ ℕ0 ) )
13 4 12 sylbir ( ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) → ( 𝑉 ≠ ∅ → 𝐾 ∈ ℕ0 ) )
14 13 ex ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 → ( ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 → ( 𝑉 ≠ ∅ → 𝐾 ∈ ℕ0 ) ) )
15 14 com23 ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 → ( 𝑉 ≠ ∅ → ( ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾𝐾 ∈ ℕ0 ) ) )
16 3 15 syl ( 𝐺 ∈ FinUSGraph → ( 𝑉 ≠ ∅ → ( ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾𝐾 ∈ ℕ0 ) ) )
17 16 imp ( ( 𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾𝐾 ∈ ℕ0 ) )