Metamath Proof Explorer


Theorem fusgrusgr

Description: A finite simple graph is a simple graph. (Contributed by AV, 16-Jan-2020) (Revised by AV, 21-Oct-2020)

Ref Expression
Assertion fusgrusgr ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
2 1 isfusgr ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ( Vtx ‘ 𝐺 ) ∈ Fin ) )
3 2 simplbi ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph )