Database
GRAPH THEORY
Undirected graphs
Vertex degree
fusgrvtxdgonume
Metamath Proof Explorer
Description: The number of vertices of odd degree is even in a finite simple graph.
Proposition 1.2.1 in Diestel p. 5. See also remark about equation (2)
in section I.1 in Bollobas p. 4. (Contributed by AV , 27-Dec-2021)
Ref
Expression
Hypotheses
finsumvtxdgeven.v
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
finsumvtxdgeven.i
⊢ 𝐼 = ( iEdg ‘ 𝐺 )
finsumvtxdgeven.d
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion
fusgrvtxdgonume
⊢ ( 𝐺 ∈ FinUSGraph → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) )
Proof
Step
Hyp
Ref
Expression
1
finsumvtxdgeven.v
⊢ 𝑉 = ( Vtx ‘ 𝐺 )
2
finsumvtxdgeven.i
⊢ 𝐼 = ( iEdg ‘ 𝐺 )
3
finsumvtxdgeven.d
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 )
4
1 2
fusgrfupgrfs
⊢ ( 𝐺 ∈ FinUSGraph → ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) )
5
1 2 3
vtxdgoddnumeven
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) )
6
4 5
syl
⊢ ( 𝐺 ∈ FinUSGraph → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) )