Metamath Proof Explorer


Theorem fv2prc

Description: A function value of a function value at a proper class is the empty set. (Contributed by AV, 8-Apr-2021)

Ref Expression
Assertion fv2prc ( ¬ 𝐴 ∈ V → ( ( 𝐹𝐴 ) ‘ 𝐵 ) = ∅ )

Proof

Step Hyp Ref Expression
1 fvprc ( ¬ 𝐴 ∈ V → ( 𝐹𝐴 ) = ∅ )
2 1 fveq1d ( ¬ 𝐴 ∈ V → ( ( 𝐹𝐴 ) ‘ 𝐵 ) = ( ∅ ‘ 𝐵 ) )
3 0fv ( ∅ ‘ 𝐵 ) = ∅
4 2 3 eqtrdi ( ¬ 𝐴 ∈ V → ( ( 𝐹𝐴 ) ‘ 𝐵 ) = ∅ )