Step |
Hyp |
Ref |
Expression |
1 |
|
elfv |
⊢ ( 𝑥 ∈ ( 𝐹 ‘ 𝐴 ) ↔ ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) |
2 |
|
biimpr |
⊢ ( ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( 𝑦 = 𝑧 → 𝐴 𝐹 𝑦 ) ) |
3 |
2
|
alimi |
⊢ ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ∀ 𝑦 ( 𝑦 = 𝑧 → 𝐴 𝐹 𝑦 ) ) |
4 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐴 𝐹 𝑦 ↔ 𝐴 𝐹 𝑧 ) ) |
5 |
4
|
equsalvw |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑧 → 𝐴 𝐹 𝑦 ) ↔ 𝐴 𝐹 𝑧 ) |
6 |
3 5
|
sylib |
⊢ ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → 𝐴 𝐹 𝑧 ) |
7 |
6
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ( 𝑥 ∈ 𝑧 ∧ 𝐴 𝐹 𝑧 ) ) |
8 |
7
|
eximi |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝐴 𝐹 𝑧 ) ) |
9 |
|
elequ2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦 ) ) |
10 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐴 𝐹 𝑧 ↔ 𝐴 𝐹 𝑦 ) ) |
11 |
9 10
|
anbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ∈ 𝑧 ∧ 𝐴 𝐹 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ) ) |
12 |
11
|
cbvexvw |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝐴 𝐹 𝑧 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ) |
13 |
8 12
|
sylib |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ) |
14 |
|
exsimpr |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ∃ 𝑧 ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) |
15 |
|
eu6 |
⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 ↔ ∃ 𝑧 ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) |
16 |
14 15
|
sylibr |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ∃! 𝑦 𝐴 𝐹 𝑦 ) |
17 |
13 16
|
jca |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
18 |
|
nfeu1 |
⊢ Ⅎ 𝑦 ∃! 𝑦 𝐴 𝐹 𝑦 |
19 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝑧 |
20 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) |
21 |
19 20
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) |
22 |
21
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) |
23 |
18 22
|
nfim |
⊢ Ⅎ 𝑦 ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) |
24 |
|
biimp |
⊢ ( ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( 𝐴 𝐹 𝑦 → 𝑦 = 𝑧 ) ) |
25 |
|
ax9 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ) |
26 |
24 25
|
syl6 |
⊢ ( ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( 𝐴 𝐹 𝑦 → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧 ) ) ) |
27 |
26
|
impcomd |
⊢ ( ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 ∈ 𝑧 ) ) |
28 |
27
|
sps |
⊢ ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → 𝑥 ∈ 𝑧 ) ) |
29 |
28
|
anc2ri |
⊢ ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) ) |
30 |
29
|
com12 |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) ) |
31 |
30
|
eximdv |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → ( ∃ 𝑧 ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) ) |
32 |
15 31
|
syl5bi |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) ) |
33 |
23 32
|
exlimi |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) → ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) ) |
34 |
33
|
imp |
⊢ ( ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) → ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ) |
35 |
17 34
|
impbii |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑧 ) ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
36 |
1 35
|
bitri |
⊢ ( 𝑥 ∈ ( 𝐹 ‘ 𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
37 |
36
|
abbi2i |
⊢ ( 𝐹 ‘ 𝐴 ) = { 𝑥 ∣ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) } |