Metamath Proof Explorer


Theorem fvbr0

Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion fvbr0 ( 𝑋 𝐹 ( 𝐹𝑋 ) ∨ ( 𝐹𝑋 ) = ∅ )

Proof

Step Hyp Ref Expression
1 eqid ( 𝐹𝑋 ) = ( 𝐹𝑋 )
2 tz6.12i ( ( 𝐹𝑋 ) ≠ ∅ → ( ( 𝐹𝑋 ) = ( 𝐹𝑋 ) → 𝑋 𝐹 ( 𝐹𝑋 ) ) )
3 1 2 mpi ( ( 𝐹𝑋 ) ≠ ∅ → 𝑋 𝐹 ( 𝐹𝑋 ) )
4 3 necon1bi ( ¬ 𝑋 𝐹 ( 𝐹𝑋 ) → ( 𝐹𝑋 ) = ∅ )
5 4 orri ( 𝑋 𝐹 ( 𝐹𝑋 ) ∨ ( 𝐹𝑋 ) = ∅ )