| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqcom | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 2 |  | tz6.12i | ⊢ ( 𝑦  ≠  ∅  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑦  →  𝑥 𝐹 𝑦 ) ) | 
						
							| 3 | 1 2 | biimtrid | ⊢ ( 𝑦  ≠  ∅  →  ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  𝑥 𝐹 𝑦 ) ) | 
						
							| 4 | 3 | eximdv | ⊢ ( 𝑦  ≠  ∅  →  ( ∃ 𝑥 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ∃ 𝑥 𝑥 𝐹 𝑦 ) ) | 
						
							| 5 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 6 | 5 | elrn | ⊢ ( 𝑦  ∈  ran  𝐹  ↔  ∃ 𝑥 𝑥 𝐹 𝑦 ) | 
						
							| 7 | 4 6 | imbitrrdi | ⊢ ( 𝑦  ≠  ∅  →  ( ∃ 𝑥 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  𝑦  ∈  ran  𝐹 ) ) | 
						
							| 8 | 7 | com12 | ⊢ ( ∃ 𝑥 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑦  ≠  ∅  →  𝑦  ∈  ran  𝐹 ) ) | 
						
							| 9 | 8 | necon1bd | ⊢ ( ∃ 𝑥 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ¬  𝑦  ∈  ran  𝐹  →  𝑦  =  ∅ ) ) | 
						
							| 10 |  | velsn | ⊢ ( 𝑦  ∈  { ∅ }  ↔  𝑦  =  ∅ ) | 
						
							| 11 | 9 10 | imbitrrdi | ⊢ ( ∃ 𝑥 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ¬  𝑦  ∈  ran  𝐹  →  𝑦  ∈  { ∅ } ) ) | 
						
							| 12 | 11 | orrd | ⊢ ( ∃ 𝑥 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑦  ∈  ran  𝐹  ∨  𝑦  ∈  { ∅ } ) ) | 
						
							| 13 | 12 | ss2abi | ⊢ { 𝑦  ∣  ∃ 𝑥 𝑦  =  ( 𝐹 ‘ 𝑥 ) }  ⊆  { 𝑦  ∣  ( 𝑦  ∈  ran  𝐹  ∨  𝑦  ∈  { ∅ } ) } | 
						
							| 14 |  | df-un | ⊢ ( ran  𝐹  ∪  { ∅ } )  =  { 𝑦  ∣  ( 𝑦  ∈  ran  𝐹  ∨  𝑦  ∈  { ∅ } ) } | 
						
							| 15 | 13 14 | sseqtrri | ⊢ { 𝑦  ∣  ∃ 𝑥 𝑦  =  ( 𝐹 ‘ 𝑥 ) }  ⊆  ( ran  𝐹  ∪  { ∅ } ) |