Metamath Proof Explorer
Description: Value of a function composition. Deduction form of fvco3 .
(Contributed by Stanislas Polu, 9-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
fvco3d.1 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
|
|
fvco3d.2 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
|
Assertion |
fvco3d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fvco3d.1 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
2 |
|
fvco3d.2 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
3 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |