Metamath Proof Explorer


Theorem fvco3d

Description: Value of a function composition. Deduction form of fvco3 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fvco3d.1 ( 𝜑𝐺 : 𝐴𝐵 )
fvco3d.2 ( 𝜑𝐶𝐴 )
Assertion fvco3d ( 𝜑 → ( ( 𝐹𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 fvco3d.1 ( 𝜑𝐺 : 𝐴𝐵 )
2 fvco3d.2 ( 𝜑𝐶𝐴 )
3 fvco3 ( ( 𝐺 : 𝐴𝐵𝐶𝐴 ) → ( ( 𝐹𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺𝐶 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( ( 𝐹𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺𝐶 ) ) )