Step |
Hyp |
Ref |
Expression |
1 |
|
fvco4i.a |
⊢ ∅ = ( 𝐹 ‘ ∅ ) |
2 |
|
fvco4i.b |
⊢ Fun 𝐺 |
3 |
|
funfn |
⊢ ( Fun 𝐺 ↔ 𝐺 Fn dom 𝐺 ) |
4 |
2 3
|
mpbi |
⊢ 𝐺 Fn dom 𝐺 |
5 |
|
fvco2 |
⊢ ( ( 𝐺 Fn dom 𝐺 ∧ 𝑋 ∈ dom 𝐺 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
6 |
4 5
|
mpan |
⊢ ( 𝑋 ∈ dom 𝐺 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
7 |
|
dmcoss |
⊢ dom ( 𝐹 ∘ 𝐺 ) ⊆ dom 𝐺 |
8 |
7
|
sseli |
⊢ ( 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) → 𝑋 ∈ dom 𝐺 ) |
9 |
|
ndmfv |
⊢ ( ¬ 𝑋 ∈ dom ( 𝐹 ∘ 𝐺 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ∅ ) |
10 |
8 9
|
nsyl5 |
⊢ ( ¬ 𝑋 ∈ dom 𝐺 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ∅ ) |
11 |
|
ndmfv |
⊢ ( ¬ 𝑋 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑋 ) = ∅ ) |
12 |
11
|
fveq2d |
⊢ ( ¬ 𝑋 ∈ dom 𝐺 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ∅ ) ) |
13 |
1 10 12
|
3eqtr4a |
⊢ ( ¬ 𝑋 ∈ dom 𝐺 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
14 |
6 13
|
pm2.61i |
⊢ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) |