Metamath Proof Explorer


Theorem fvcod

Description: Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fvcod.g ( 𝜑 → Fun 𝐺 )
fvcod.a ( 𝜑𝐴 ∈ dom 𝐺 )
fvcod.h 𝐻 = ( 𝐹𝐺 )
Assertion fvcod ( 𝜑 → ( 𝐻𝐴 ) = ( 𝐹 ‘ ( 𝐺𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 fvcod.g ( 𝜑 → Fun 𝐺 )
2 fvcod.a ( 𝜑𝐴 ∈ dom 𝐺 )
3 fvcod.h 𝐻 = ( 𝐹𝐺 )
4 3 fveq1i ( 𝐻𝐴 ) = ( ( 𝐹𝐺 ) ‘ 𝐴 )
5 4 a1i ( 𝜑 → ( 𝐻𝐴 ) = ( ( 𝐹𝐺 ) ‘ 𝐴 ) )
6 fvco ( ( Fun 𝐺𝐴 ∈ dom 𝐺 ) → ( ( 𝐹𝐺 ) ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐺𝐴 ) ) )
7 1 2 6 syl2anc ( 𝜑 → ( ( 𝐹𝐺 ) ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐺𝐴 ) ) )
8 5 7 eqtrd ( 𝜑 → ( 𝐻𝐴 ) = ( 𝐹 ‘ ( 𝐺𝐴 ) ) )