Description: Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fvcod.g | ⊢ ( 𝜑 → Fun 𝐺 ) | |
fvcod.a | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝐺 ) | ||
fvcod.h | ⊢ 𝐻 = ( 𝐹 ∘ 𝐺 ) | ||
Assertion | fvcod | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvcod.g | ⊢ ( 𝜑 → Fun 𝐺 ) | |
2 | fvcod.a | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝐺 ) | |
3 | fvcod.h | ⊢ 𝐻 = ( 𝐹 ∘ 𝐺 ) | |
4 | 3 | fveq1i | ⊢ ( 𝐻 ‘ 𝐴 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐴 ) |
5 | 4 | a1i | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝐴 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐴 ) ) |
6 | fvco | ⊢ ( ( Fun 𝐺 ∧ 𝐴 ∈ dom 𝐺 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐴 ) ) ) | |
7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐴 ) ) ) |
8 | 5 7 | eqtrd | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐴 ) ) ) |