Metamath Proof Explorer


Theorem fvconst

Description: The value of a constant function. (Contributed by NM, 30-May-1999)

Ref Expression
Assertion fvconst ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝐶𝐴 ) → ( 𝐹𝐶 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 ffvelrn ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝐶𝐴 ) → ( 𝐹𝐶 ) ∈ { 𝐵 } )
2 elsni ( ( 𝐹𝐶 ) ∈ { 𝐵 } → ( 𝐹𝐶 ) = 𝐵 )
3 1 2 syl ( ( 𝐹 : 𝐴 ⟶ { 𝐵 } ∧ 𝐶𝐴 ) → ( 𝐹𝐶 ) = 𝐵 )