| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvconst0ci.1 | ⊢ 𝐵  ∈  V | 
						
							| 2 |  | fvconst0ci.2 | ⊢ 𝑌  =  ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑋 ) | 
						
							| 3 |  | dmxpss | ⊢ dom  ( 𝐴  ×  { 𝐵 } )  ⊆  𝐴 | 
						
							| 4 | 3 | sseli | ⊢ ( 𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  𝑋  ∈  𝐴 ) | 
						
							| 5 | 1 | fvconst2 | ⊢ ( 𝑋  ∈  𝐴  →  ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑋 )  =  𝐵 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑋 )  =  𝐵 ) | 
						
							| 7 | 2 6 | eqtrid | ⊢ ( 𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  𝑌  =  𝐵 ) | 
						
							| 8 | 7 | olcd | ⊢ ( 𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  ( 𝑌  =  ∅  ∨  𝑌  =  𝐵 ) ) | 
						
							| 9 |  | ndmfv | ⊢ ( ¬  𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑋 )  =  ∅ ) | 
						
							| 10 | 2 9 | eqtrid | ⊢ ( ¬  𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  𝑌  =  ∅ ) | 
						
							| 11 | 10 | orcd | ⊢ ( ¬  𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  ( 𝑌  =  ∅  ∨  𝑌  =  𝐵 ) ) | 
						
							| 12 | 8 11 | pm2.61i | ⊢ ( 𝑌  =  ∅  ∨  𝑌  =  𝐵 ) |