Metamath Proof Explorer


Theorem fvconst2g

Description: The value of a constant function. (Contributed by NM, 20-Aug-2005)

Ref Expression
Assertion fvconst2g ( ( 𝐵𝐷𝐶𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝐶 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 fconstg ( 𝐵𝐷 → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } )
2 fvconst ( ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ { 𝐵 } ∧ 𝐶𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝐶 ) = 𝐵 )
3 1 2 sylan ( ( 𝐵𝐷𝐶𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝐶 ) = 𝐵 )