Metamath Proof Explorer


Theorem fvconstdomi

Description: A constant function's value is dominated by the constant. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypothesis fvconstdomi.1 𝐵 ∈ V
Assertion fvconstdomi ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) ≼ 𝐵

Proof

Step Hyp Ref Expression
1 fvconstdomi.1 𝐵 ∈ V
2 dmxpss dom ( 𝐴 × { 𝐵 } ) ⊆ 𝐴
3 2 sseli ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → 𝑋𝐴 )
4 1 fvconst2 ( 𝑋𝐴 → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 )
5 3 4 syl ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 )
6 domrefg ( 𝐵 ∈ V → 𝐵𝐵 )
7 1 6 ax-mp 𝐵𝐵
8 5 7 eqbrtrdi ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) ≼ 𝐵 )
9 ndmfv ( ¬ 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = ∅ )
10 1 0dom ∅ ≼ 𝐵
11 9 10 eqbrtrdi ( ¬ 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) ≼ 𝐵 )
12 8 11 pm2.61i ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) ≼ 𝐵