Step |
Hyp |
Ref |
Expression |
1 |
|
fvconstdomi.1 |
⊢ 𝐵 ∈ V |
2 |
|
dmxpss |
⊢ dom ( 𝐴 × { 𝐵 } ) ⊆ 𝐴 |
3 |
2
|
sseli |
⊢ ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → 𝑋 ∈ 𝐴 ) |
4 |
1
|
fvconst2 |
⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 ) |
5 |
3 4
|
syl |
⊢ ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = 𝐵 ) |
6 |
|
domrefg |
⊢ ( 𝐵 ∈ V → 𝐵 ≼ 𝐵 ) |
7 |
1 6
|
ax-mp |
⊢ 𝐵 ≼ 𝐵 |
8 |
5 7
|
eqbrtrdi |
⊢ ( 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) ≼ 𝐵 ) |
9 |
|
ndmfv |
⊢ ( ¬ 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) = ∅ ) |
10 |
1
|
0dom |
⊢ ∅ ≼ 𝐵 |
11 |
9 10
|
eqbrtrdi |
⊢ ( ¬ 𝑋 ∈ dom ( 𝐴 × { 𝐵 } ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) ≼ 𝐵 ) |
12 |
8 11
|
pm2.61i |
⊢ ( ( 𝐴 × { 𝐵 } ) ‘ 𝑋 ) ≼ 𝐵 |