| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvconstdomi.1 | ⊢ 𝐵  ∈  V | 
						
							| 2 |  | dmxpss | ⊢ dom  ( 𝐴  ×  { 𝐵 } )  ⊆  𝐴 | 
						
							| 3 | 2 | sseli | ⊢ ( 𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  𝑋  ∈  𝐴 ) | 
						
							| 4 | 1 | fvconst2 | ⊢ ( 𝑋  ∈  𝐴  →  ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑋 )  =  𝐵 ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑋 )  =  𝐵 ) | 
						
							| 6 |  | domrefg | ⊢ ( 𝐵  ∈  V  →  𝐵  ≼  𝐵 ) | 
						
							| 7 | 1 6 | ax-mp | ⊢ 𝐵  ≼  𝐵 | 
						
							| 8 | 5 7 | eqbrtrdi | ⊢ ( 𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑋 )  ≼  𝐵 ) | 
						
							| 9 |  | ndmfv | ⊢ ( ¬  𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑋 )  =  ∅ ) | 
						
							| 10 | 1 | 0dom | ⊢ ∅  ≼  𝐵 | 
						
							| 11 | 9 10 | eqbrtrdi | ⊢ ( ¬  𝑋  ∈  dom  ( 𝐴  ×  { 𝐵 } )  →  ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑋 )  ≼  𝐵 ) | 
						
							| 12 | 8 11 | pm2.61i | ⊢ ( ( 𝐴  ×  { 𝐵 } ) ‘ 𝑋 )  ≼  𝐵 |