Step |
Hyp |
Ref |
Expression |
1 |
|
gsmsymgrfix.s |
⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) |
2 |
|
gsmsymgrfix.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
gsmsymgreq.z |
⊢ 𝑍 = ( SymGrp ‘ 𝑀 ) |
4 |
|
gsmsymgreq.p |
⊢ 𝑃 = ( Base ‘ 𝑍 ) |
5 |
|
gsmsymgreq.i |
⊢ 𝐼 = ( 𝑁 ∩ 𝑀 ) |
6 |
1 2
|
symgbasf |
⊢ ( 𝐺 ∈ 𝐵 → 𝐺 : 𝑁 ⟶ 𝑁 ) |
7 |
6
|
ffnd |
⊢ ( 𝐺 ∈ 𝐵 → 𝐺 Fn 𝑁 ) |
8 |
3 4
|
symgbasf |
⊢ ( 𝐾 ∈ 𝑃 → 𝐾 : 𝑀 ⟶ 𝑀 ) |
9 |
8
|
ffnd |
⊢ ( 𝐾 ∈ 𝑃 → 𝐾 Fn 𝑀 ) |
10 |
7 9
|
anim12i |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ( 𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀 ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → ( 𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀 ) ) |
12 |
5
|
eleq2i |
⊢ ( 𝑋 ∈ 𝐼 ↔ 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ) |
13 |
12
|
biimpi |
⊢ ( 𝑋 ∈ 𝐼 → 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) → 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ) |
16 |
|
simpr2 |
⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ) |
17 |
1 2
|
symgbasf1o |
⊢ ( 𝐺 ∈ 𝐵 → 𝐺 : 𝑁 –1-1-onto→ 𝑁 ) |
18 |
|
dff1o5 |
⊢ ( 𝐺 : 𝑁 –1-1-onto→ 𝑁 ↔ ( 𝐺 : 𝑁 –1-1→ 𝑁 ∧ ran 𝐺 = 𝑁 ) ) |
19 |
|
eqcom |
⊢ ( ran 𝐺 = 𝑁 ↔ 𝑁 = ran 𝐺 ) |
20 |
19
|
biimpi |
⊢ ( ran 𝐺 = 𝑁 → 𝑁 = ran 𝐺 ) |
21 |
18 20
|
simplbiim |
⊢ ( 𝐺 : 𝑁 –1-1-onto→ 𝑁 → 𝑁 = ran 𝐺 ) |
22 |
17 21
|
syl |
⊢ ( 𝐺 ∈ 𝐵 → 𝑁 = ran 𝐺 ) |
23 |
3 4
|
symgbasf1o |
⊢ ( 𝐾 ∈ 𝑃 → 𝐾 : 𝑀 –1-1-onto→ 𝑀 ) |
24 |
|
dff1o5 |
⊢ ( 𝐾 : 𝑀 –1-1-onto→ 𝑀 ↔ ( 𝐾 : 𝑀 –1-1→ 𝑀 ∧ ran 𝐾 = 𝑀 ) ) |
25 |
|
eqcom |
⊢ ( ran 𝐾 = 𝑀 ↔ 𝑀 = ran 𝐾 ) |
26 |
25
|
biimpi |
⊢ ( ran 𝐾 = 𝑀 → 𝑀 = ran 𝐾 ) |
27 |
24 26
|
simplbiim |
⊢ ( 𝐾 : 𝑀 –1-1-onto→ 𝑀 → 𝑀 = ran 𝐾 ) |
28 |
23 27
|
syl |
⊢ ( 𝐾 ∈ 𝑃 → 𝑀 = ran 𝐾 ) |
29 |
22 28
|
ineqan12d |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ( 𝑁 ∩ 𝑀 ) = ( ran 𝐺 ∩ ran 𝐾 ) ) |
30 |
5 29
|
eqtrid |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → 𝐼 = ( ran 𝐺 ∩ ran 𝐾 ) ) |
31 |
30
|
raleqdv |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) |
32 |
31
|
biimpcd |
⊢ ( ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) → ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) |
33 |
32
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) |
34 |
33
|
impcom |
⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) |
35 |
15 16 34
|
3jca |
⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → ( 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) |
36 |
|
fvcofneq |
⊢ ( ( 𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀 ) → ( ( 𝑋 ∈ ( 𝑁 ∩ 𝑀 ) ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ ( ran 𝐺 ∩ ran 𝐾 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐻 ∘ 𝐾 ) ‘ 𝑋 ) ) ) |
37 |
11 35 36
|
sylc |
⊢ ( ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) ∧ ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐻 ∘ 𝐾 ) ‘ 𝑋 ) ) |
38 |
37
|
ex |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃 ) → ( ( 𝑋 ∈ 𝐼 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐾 ‘ 𝑋 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐹 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( ( 𝐻 ∘ 𝐾 ) ‘ 𝑋 ) ) ) |