Metamath Proof Explorer


Theorem fvdiagfn

Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis fdiagfn.f 𝐹 = ( 𝑥𝐵 ↦ ( 𝐼 × { 𝑥 } ) )
Assertion fvdiagfn ( ( 𝐼𝑊𝑋𝐵 ) → ( 𝐹𝑋 ) = ( 𝐼 × { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 fdiagfn.f 𝐹 = ( 𝑥𝐵 ↦ ( 𝐼 × { 𝑥 } ) )
2 sneq ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } )
3 2 xpeq2d ( 𝑥 = 𝑋 → ( 𝐼 × { 𝑥 } ) = ( 𝐼 × { 𝑋 } ) )
4 simpr ( ( 𝐼𝑊𝑋𝐵 ) → 𝑋𝐵 )
5 snex { 𝑋 } ∈ V
6 xpexg ( ( 𝐼𝑊 ∧ { 𝑋 } ∈ V ) → ( 𝐼 × { 𝑋 } ) ∈ V )
7 5 6 mpan2 ( 𝐼𝑊 → ( 𝐼 × { 𝑋 } ) ∈ V )
8 7 adantr ( ( 𝐼𝑊𝑋𝐵 ) → ( 𝐼 × { 𝑋 } ) ∈ V )
9 1 3 4 8 fvmptd3 ( ( 𝐼𝑊𝑋𝐵 ) → ( 𝐹𝑋 ) = ( 𝐼 × { 𝑋 } ) )