Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fdiagfn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | |
| Assertion | fvdiagfn | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐼 × { 𝑋 } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fdiagfn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | |
| 2 | sneq | ⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) | |
| 3 | 2 | xpeq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐼 × { 𝑥 } ) = ( 𝐼 × { 𝑋 } ) ) | 
| 4 | simpr | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 5 | snex | ⊢ { 𝑋 } ∈ V | |
| 6 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ { 𝑋 } ∈ V ) → ( 𝐼 × { 𝑋 } ) ∈ V ) | |
| 7 | 5 6 | mpan2 | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝐼 × { 𝑋 } ) ∈ V ) | 
| 8 | 7 | adantr | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 × { 𝑋 } ) ∈ V ) | 
| 9 | 1 3 4 8 | fvmptd3 | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐼 × { 𝑋 } ) ) |