| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fvdifsupp.1 | 
							⊢ ( 𝜑  →  𝐹  Fn  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							fvdifsupp.2 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							fvdifsupp.3 | 
							⊢ ( 𝜑  →  𝑍  ∈  𝑊 )  | 
						
						
							| 4 | 
							
								
							 | 
							fvdifsupp.4 | 
							⊢ ( 𝜑  →  𝑋  ∈  ( 𝐴  ∖  ( 𝐹  supp  𝑍 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eldifbd | 
							⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝐹  supp  𝑍 ) )  | 
						
						
							| 6 | 
							
								4
							 | 
							eldifad | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							elsuppfn | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝑋  ∈  ( 𝐹  supp  𝑍 )  ↔  ( 𝑋  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑋 )  ≠  𝑍 ) ) )  | 
						
						
							| 8 | 
							
								1 2 3 7
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐹  supp  𝑍 )  ↔  ( 𝑋  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑋 )  ≠  𝑍 ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							mpbirand | 
							⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐹  supp  𝑍 )  ↔  ( 𝐹 ‘ 𝑋 )  ≠  𝑍 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							necon2bbid | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 )  =  𝑍  ↔  ¬  𝑋  ∈  ( 𝐹  supp  𝑍 ) ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  =  𝑍 )  |