Metamath Proof Explorer


Theorem fvelima

Description: Function value in an image. Part of Theorem 4.4(iii) of Monk1 p. 42. (Contributed by NM, 29-Apr-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion fvelima ( ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) → ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 funbrfv ( Fun 𝐹 → ( 𝑥 𝐹 𝐴 → ( 𝐹𝑥 ) = 𝐴 ) )
2 1 reximdv ( Fun 𝐹 → ( ∃ 𝑥𝐵 𝑥 𝐹 𝐴 → ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐴 ) )
3 elimag ( 𝐴 ∈ ( 𝐹𝐵 ) → ( 𝐴 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 𝑥 𝐹 𝐴 ) )
4 3 ibi ( 𝐴 ∈ ( 𝐹𝐵 ) → ∃ 𝑥𝐵 𝑥 𝐹 𝐴 )
5 2 4 impel ( ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) → ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐴 )