Step |
Hyp |
Ref |
Expression |
1 |
|
elimag |
⊢ ( 𝐵 ∈ ( 𝐹 “ 𝐶 ) → ( 𝐵 ∈ ( 𝐹 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐹 𝐵 ) ) |
2 |
1
|
ibi |
⊢ ( 𝐵 ∈ ( 𝐹 “ 𝐶 ) → ∃ 𝑥 ∈ 𝐶 𝑥 𝐹 𝐵 ) |
3 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐶 𝑥 𝐹 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) |
4 |
2 3
|
sylib |
⊢ ( 𝐵 ∈ ( 𝐹 “ 𝐶 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) |
5 |
|
fnbr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 𝐹 𝐵 ) → 𝑥 ∈ 𝐴 ) |
6 |
5
|
adantrl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
7 |
|
simprl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → 𝑥 ∈ 𝐶 ) |
8 |
6 7
|
elind |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ) |
9 |
|
fnfun |
⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) |
10 |
|
funbrfv |
⊢ ( Fun 𝐹 → ( 𝑥 𝐹 𝐵 → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |
11 |
10
|
imp |
⊢ ( ( Fun 𝐹 ∧ 𝑥 𝐹 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
12 |
9 11
|
sylan |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 𝐹 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
13 |
12
|
adantrl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
14 |
8 13
|
jca |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |
15 |
14
|
ex |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) ) |
16 |
15
|
eximdv |
⊢ ( 𝐹 Fn 𝐴 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) → ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) ) |
17 |
16
|
imp |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |
18 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐹 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
20 |
4 19
|
sylan2 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ ( 𝐹 “ 𝐶 ) ) → ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |