Metamath Proof Explorer


Theorem fvelimabd

Description: Deduction form of fvelimab . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fvelimabd.1 ( 𝜑𝐹 Fn 𝐴 )
fvelimabd.2 ( 𝜑𝐵𝐴 )
Assertion fvelimabd ( 𝜑 → ( 𝐶 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 fvelimabd.1 ( 𝜑𝐹 Fn 𝐴 )
2 fvelimabd.2 ( 𝜑𝐵𝐴 )
3 fvelimab ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( 𝐶 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐶 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 ( 𝐹𝑥 ) = 𝐶 ) )