| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvelimad.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | fvelimad.f | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 3 |  | fvelimad.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐹  “  𝐵 ) ) | 
						
							| 4 |  | elimag | ⊢ ( 𝐶  ∈  ( 𝐹  “  𝐵 )  →  ( 𝐶  ∈  ( 𝐹  “  𝐵 )  ↔  ∃ 𝑦  ∈  𝐵 𝑦 𝐹 𝐶 ) ) | 
						
							| 5 | 4 | ibi | ⊢ ( 𝐶  ∈  ( 𝐹  “  𝐵 )  →  ∃ 𝑦  ∈  𝐵 𝑦 𝐹 𝐶 ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝐵 𝑦 𝐹 𝐶 ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 8 |  | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝐹 ‘ 𝑦 )  =  𝐶 | 
						
							| 9 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝜑  ∧  𝑦 𝐹 𝐶 )  →  𝑦  ∈  V ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑦 𝐹 𝐶 )  →  𝐶  ∈  ( 𝐹  “  𝐵 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦 𝐹 𝐶 )  →  𝑦 𝐹 𝐶 ) | 
						
							| 13 | 10 11 12 | breldmd | ⊢ ( ( 𝜑  ∧  𝑦 𝐹 𝐶 )  →  𝑦  ∈  dom  𝐹 ) | 
						
							| 14 | 2 | fndmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑦 𝐹 𝐶 )  →  dom  𝐹  =  𝐴 ) | 
						
							| 16 | 13 15 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑦 𝐹 𝐶 )  →  𝑦  ∈  𝐴 ) | 
						
							| 17 | 16 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑦 𝐹 𝐶 )  →  𝑦  ∈  𝐴 ) | 
						
							| 18 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑦 𝐹 𝐶 )  →  𝑦  ∈  𝐵 ) | 
						
							| 19 | 17 18 | elind | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑦 𝐹 𝐶 )  →  𝑦  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 20 |  | fnfun | ⊢ ( 𝐹  Fn  𝐴  →  Fun  𝐹 ) | 
						
							| 21 | 2 20 | syl | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑦 𝐹 𝐶 )  →  Fun  𝐹 ) | 
						
							| 23 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑦 𝐹 𝐶 )  →  𝑦 𝐹 𝐶 ) | 
						
							| 24 |  | funbrfv | ⊢ ( Fun  𝐹  →  ( 𝑦 𝐹 𝐶  →  ( 𝐹 ‘ 𝑦 )  =  𝐶 ) ) | 
						
							| 25 | 22 23 24 | sylc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑦 𝐹 𝐶 )  →  ( 𝐹 ‘ 𝑦 )  =  𝐶 ) | 
						
							| 26 |  | rspe | ⊢ ( ( 𝑦  ∈  ( 𝐴  ∩  𝐵 )  ∧  ( 𝐹 ‘ 𝑦 )  =  𝐶 )  →  ∃ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝐹 ‘ 𝑦 )  =  𝐶 ) | 
						
							| 27 | 19 25 26 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵  ∧  𝑦 𝐹 𝐶 )  →  ∃ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝐹 ‘ 𝑦 )  =  𝐶 ) | 
						
							| 28 | 27 | 3exp | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  →  ( 𝑦 𝐹 𝐶  →  ∃ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝐹 ‘ 𝑦 )  =  𝐶 ) ) ) | 
						
							| 29 | 7 8 28 | rexlimd | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  𝐵 𝑦 𝐹 𝐶  →  ∃ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝐹 ‘ 𝑦 )  =  𝐶 ) ) | 
						
							| 30 | 6 29 | mpd | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝐹 ‘ 𝑦 )  =  𝐶 ) | 
						
							| 31 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 )  =  𝐶 | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 33 | 1 32 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) | 
						
							| 34 | 33 | nfeq1 | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 )  =  𝐶 | 
						
							| 35 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  =  𝐶  ↔  ( 𝐹 ‘ 𝑦 )  =  𝐶 ) ) | 
						
							| 36 | 31 34 35 | cbvrexw | ⊢ ( ∃ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ( 𝐹 ‘ 𝑥 )  =  𝐶  ↔  ∃ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝐹 ‘ 𝑦 )  =  𝐶 ) | 
						
							| 37 | 30 36 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ( 𝐹 ‘ 𝑥 )  =  𝐶 ) |