Step |
Hyp |
Ref |
Expression |
1 |
|
fvelimad.x |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
fvelimad.f |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
3 |
|
fvelimad.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 “ 𝐵 ) ) |
4 |
|
elimag |
⊢ ( 𝐶 ∈ ( 𝐹 “ 𝐵 ) → ( 𝐶 ∈ ( 𝐹 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑦 𝐹 𝐶 ) ) |
5 |
4
|
ibi |
⊢ ( 𝐶 ∈ ( 𝐹 “ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 𝑦 𝐹 𝐶 ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐵 𝑦 𝐹 𝐶 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
8 |
|
nfre1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 |
9 |
|
vex |
⊢ 𝑦 ∈ V |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ V ) |
11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → 𝐶 ∈ ( 𝐹 “ 𝐵 ) ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 𝐹 𝐶 ) |
13 |
10 11 12
|
breldmd |
⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ dom 𝐹 ) |
14 |
2
|
fndmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → dom 𝐹 = 𝐴 ) |
16 |
13 15
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ 𝐴 ) |
17 |
16
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ 𝐴 ) |
18 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ 𝐵 ) |
19 |
17 18
|
elind |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) |
20 |
|
fnfun |
⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → Fun 𝐹 ) |
23 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → 𝑦 𝐹 𝐶 ) |
24 |
|
funbrfv |
⊢ ( Fun 𝐹 → ( 𝑦 𝐹 𝐶 → ( 𝐹 ‘ 𝑦 ) = 𝐶 ) ) |
25 |
22 23 24
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → ( 𝐹 ‘ 𝑦 ) = 𝐶 ) |
26 |
|
rspe |
⊢ ( ( 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 𝐶 ) → ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) |
27 |
19 25 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 𝐹 𝐶 ) → ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) |
28 |
27
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ( 𝑦 𝐹 𝐶 → ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) ) ) |
29 |
7 8 28
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐵 𝑦 𝐹 𝐶 → ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) ) |
30 |
6 29
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) |
31 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) = 𝐶 |
32 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
33 |
1 32
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
34 |
33
|
nfeq1 |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝐶 |
35 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ( 𝐹 ‘ 𝑦 ) = 𝐶 ) ) |
36 |
31 34 35
|
cbvrexw |
⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑥 ) = 𝐶 ↔ ∃ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑦 ) = 𝐶 ) |
37 |
30 36
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |