Step |
Hyp |
Ref |
Expression |
1 |
|
fnrnfv |
⊢ ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ) |
2 |
1
|
eleq2d |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ran 𝐹 ↔ 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ) ) |
3 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
4 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ∈ V ↔ 𝐵 ∈ V ) ) |
5 |
3 4
|
mpbii |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝐵 → 𝐵 ∈ V ) |
6 |
5
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 → 𝐵 ∈ V ) |
7 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝐵 = ( 𝐹 ‘ 𝑥 ) ) ) |
8 |
|
eqcom |
⊢ ( 𝐵 = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
9 |
7 8
|
bitrdi |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |
11 |
6 10
|
elab3 |
⊢ ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
12 |
2 11
|
bitrdi |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝐵 ) ) |