Metamath Proof Explorer


Theorem fvelrnbf

Description: A version of fvelrnb using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fvelrnbf.1 𝑥 𝐴
fvelrnbf.2 𝑥 𝐵
fvelrnbf.3 𝑥 𝐹
Assertion fvelrnbf ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ran 𝐹 ↔ ∃ 𝑥𝐴 ( 𝐹𝑥 ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fvelrnbf.1 𝑥 𝐴
2 fvelrnbf.2 𝑥 𝐵
3 fvelrnbf.3 𝑥 𝐹
4 fvelrnb ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ran 𝐹 ↔ ∃ 𝑦𝐴 ( 𝐹𝑦 ) = 𝐵 ) )
5 nfcv 𝑦 𝐴
6 nfcv 𝑥 𝑦
7 3 6 nffv 𝑥 ( 𝐹𝑦 )
8 7 2 nfeq 𝑥 ( 𝐹𝑦 ) = 𝐵
9 nfv 𝑦 ( 𝐹𝑥 ) = 𝐵
10 fveqeq2 ( 𝑦 = 𝑥 → ( ( 𝐹𝑦 ) = 𝐵 ↔ ( 𝐹𝑥 ) = 𝐵 ) )
11 5 1 8 9 10 cbvrexfw ( ∃ 𝑦𝐴 ( 𝐹𝑦 ) = 𝐵 ↔ ∃ 𝑥𝐴 ( 𝐹𝑥 ) = 𝐵 )
12 4 11 bitrdi ( 𝐹 Fn 𝐴 → ( 𝐵 ∈ ran 𝐹 ↔ ∃ 𝑥𝐴 ( 𝐹𝑥 ) = 𝐵 ) )