Description: Equality theorem for function value. (Contributed by NM, 29-Dec-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fveq1 | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq | ⊢ ( 𝐹 = 𝐺 → ( 𝐴 𝐹 𝑥 ↔ 𝐴 𝐺 𝑥 ) ) | |
| 2 | 1 | iotabidv | ⊢ ( 𝐹 = 𝐺 → ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( ℩ 𝑥 𝐴 𝐺 𝑥 ) ) |
| 3 | df-fv | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) | |
| 4 | df-fv | ⊢ ( 𝐺 ‘ 𝐴 ) = ( ℩ 𝑥 𝐴 𝐺 𝑥 ) | |
| 5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) |