Step |
Hyp |
Ref |
Expression |
1 |
|
fveqf1o.1 |
⊢ 𝐺 = ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) |
2 |
|
simp1 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
3 |
|
f1oi |
⊢ ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) : ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) |
4 |
3
|
a1i |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) : ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) |
5 |
|
simp2 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐶 ∈ 𝐴 ) |
6 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
7 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
8 |
2 6 7
|
3syl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
9 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐷 ∈ 𝐵 ) |
10 |
8 9
|
ffvelrnd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝐷 ) ∈ 𝐴 ) |
11 |
|
f1oprswap |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ◡ 𝐹 ‘ 𝐷 ) ∈ 𝐴 ) → { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } : { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } –1-1-onto→ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) |
12 |
5 10 11
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } : { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } –1-1-onto→ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) |
13 |
|
disjdifr |
⊢ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∩ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ∅ |
14 |
13
|
a1i |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∩ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ∅ ) |
15 |
|
f1oun |
⊢ ( ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) : ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∧ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } : { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } –1-1-onto→ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∧ ( ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∩ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ∅ ∧ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∩ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ∅ ) ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) |
16 |
4 12 14 14 15
|
syl22anc |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) |
17 |
|
uncom |
⊢ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ( { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ∪ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) |
18 |
5 10
|
prssd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ⊆ 𝐴 ) |
19 |
|
undif |
⊢ ( { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ⊆ 𝐴 ↔ ( { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ∪ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) = 𝐴 ) |
20 |
18 19
|
sylib |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ∪ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) = 𝐴 ) |
21 |
17 20
|
eqtrid |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = 𝐴 ) |
22 |
21
|
f1oeq2d |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ↔ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ) |
23 |
16 22
|
mpbid |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) |
24 |
21
|
f1oeq3d |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∪ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ↔ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ 𝐴 ) ) |
25 |
23 24
|
mpbid |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ 𝐴 ) |
26 |
|
f1oco |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) : 𝐴 –1-1-onto→ 𝐵 ) |
27 |
2 25 26
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) : 𝐴 –1-1-onto→ 𝐵 ) |
28 |
|
f1oeq1 |
⊢ ( 𝐺 = ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) → ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) : 𝐴 –1-1-onto→ 𝐵 ) ) |
29 |
1 28
|
ax-mp |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) : 𝐴 –1-1-onto→ 𝐵 ) |
30 |
27 29
|
sylibr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐺 : 𝐴 –1-1-onto→ 𝐵 ) |
31 |
1
|
fveq1i |
⊢ ( 𝐺 ‘ 𝐶 ) = ( ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) ‘ 𝐶 ) |
32 |
|
f1of |
⊢ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 –1-1-onto→ 𝐴 → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 ⟶ 𝐴 ) |
33 |
25 32
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 ⟶ 𝐴 ) |
34 |
|
fvco3 |
⊢ ( ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) : 𝐴 ⟶ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) ‘ 𝐶 ) = ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) ) ) |
35 |
33 5 34
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ) ‘ 𝐶 ) = ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) ) ) |
36 |
31 35
|
eqtrid |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐺 ‘ 𝐶 ) = ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) ) ) |
37 |
|
fnresi |
⊢ ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) Fn ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) |
38 |
37
|
a1i |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) Fn ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) |
39 |
|
f1ofn |
⊢ ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } : { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } –1-1-onto→ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } → { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } Fn { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) |
40 |
12 39
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } Fn { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) |
41 |
|
prid1g |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) |
42 |
5 41
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐶 ∈ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) |
43 |
|
fvun2 |
⊢ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) Fn ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∧ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } Fn { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ∧ ( ( ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ∩ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) = ∅ ∧ 𝐶 ∈ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) = ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ‘ 𝐶 ) ) |
44 |
38 40 14 42 43
|
syl112anc |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) = ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ‘ 𝐶 ) ) |
45 |
|
f1ofun |
⊢ ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } : { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } –1-1-onto→ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } → Fun { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) |
46 |
12 45
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → Fun { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) |
47 |
|
opex |
⊢ 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 ∈ V |
48 |
47
|
prid1 |
⊢ 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 ∈ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } |
49 |
|
funopfv |
⊢ ( Fun { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } → ( 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 ∈ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } → ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ‘ 𝐶 ) = ( ◡ 𝐹 ‘ 𝐷 ) ) ) |
50 |
46 48 49
|
mpisyl |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ‘ 𝐶 ) = ( ◡ 𝐹 ‘ 𝐷 ) ) |
51 |
44 50
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) = ( ◡ 𝐹 ‘ 𝐷 ) ) |
52 |
51
|
fveq2d |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐷 ) ) ) |
53 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐷 ) ) = 𝐷 ) |
54 |
2 9 53
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐷 ) ) = 𝐷 ) |
55 |
52 54
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) } ) ) ∪ { 〈 𝐶 , ( ◡ 𝐹 ‘ 𝐷 ) 〉 , 〈 ( ◡ 𝐹 ‘ 𝐷 ) , 𝐶 〉 } ) ‘ 𝐶 ) ) = 𝐷 ) |
56 |
36 55
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐺 ‘ 𝐶 ) = 𝐷 ) |
57 |
30 56
|
jca |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝐺 ‘ 𝐶 ) = 𝐷 ) ) |