Metamath Proof Explorer


Theorem fveqf1o

Description: Given a bijection F , produce another bijection G which additionally maps two specified points. (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Hypothesis fveqf1o.1 𝐺 = ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) )
Assertion fveqf1o ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( 𝐺 : 𝐴1-1-onto𝐵 ∧ ( 𝐺𝐶 ) = 𝐷 ) )

Proof

Step Hyp Ref Expression
1 fveqf1o.1 𝐺 = ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) )
2 simp1 ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → 𝐹 : 𝐴1-1-onto𝐵 )
3 f1oi ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) : ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) –1-1-onto→ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } )
4 3 a1i ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) : ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) –1-1-onto→ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) )
5 simp2 ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → 𝐶𝐴 )
6 f1ocnv ( 𝐹 : 𝐴1-1-onto𝐵 𝐹 : 𝐵1-1-onto𝐴 )
7 f1of ( 𝐹 : 𝐵1-1-onto𝐴 𝐹 : 𝐵𝐴 )
8 2 6 7 3syl ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → 𝐹 : 𝐵𝐴 )
9 simp3 ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → 𝐷𝐵 )
10 8 9 ffvelrnd ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( 𝐹𝐷 ) ∈ 𝐴 )
11 f1oprswap ( ( 𝐶𝐴 ∧ ( 𝐹𝐷 ) ∈ 𝐴 ) → { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } : { 𝐶 , ( 𝐹𝐷 ) } –1-1-onto→ { 𝐶 , ( 𝐹𝐷 ) } )
12 5 10 11 syl2anc ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } : { 𝐶 , ( 𝐹𝐷 ) } –1-1-onto→ { 𝐶 , ( 𝐹𝐷 ) } )
13 incom ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∩ { 𝐶 , ( 𝐹𝐷 ) } ) = ( { 𝐶 , ( 𝐹𝐷 ) } ∩ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) )
14 disjdif ( { 𝐶 , ( 𝐹𝐷 ) } ∩ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) = ∅
15 13 14 eqtri ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∩ { 𝐶 , ( 𝐹𝐷 ) } ) = ∅
16 15 a1i ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∩ { 𝐶 , ( 𝐹𝐷 ) } ) = ∅ )
17 f1oun ( ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) : ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) –1-1-onto→ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∧ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } : { 𝐶 , ( 𝐹𝐷 ) } –1-1-onto→ { 𝐶 , ( 𝐹𝐷 ) } ) ∧ ( ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∩ { 𝐶 , ( 𝐹𝐷 ) } ) = ∅ ∧ ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∩ { 𝐶 , ( 𝐹𝐷 ) } ) = ∅ ) ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∪ { 𝐶 , ( 𝐹𝐷 ) } ) –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∪ { 𝐶 , ( 𝐹𝐷 ) } ) )
18 4 12 16 16 17 syl22anc ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∪ { 𝐶 , ( 𝐹𝐷 ) } ) –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∪ { 𝐶 , ( 𝐹𝐷 ) } ) )
19 uncom ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∪ { 𝐶 , ( 𝐹𝐷 ) } ) = ( { 𝐶 , ( 𝐹𝐷 ) } ∪ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) )
20 5 10 prssd ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → { 𝐶 , ( 𝐹𝐷 ) } ⊆ 𝐴 )
21 undif ( { 𝐶 , ( 𝐹𝐷 ) } ⊆ 𝐴 ↔ ( { 𝐶 , ( 𝐹𝐷 ) } ∪ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) = 𝐴 )
22 20 21 sylib ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( { 𝐶 , ( 𝐹𝐷 ) } ∪ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) = 𝐴 )
23 19 22 syl5eq ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∪ { 𝐶 , ( 𝐹𝐷 ) } ) = 𝐴 )
24 23 f1oeq2d ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∪ { 𝐶 , ( 𝐹𝐷 ) } ) –1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∪ { 𝐶 , ( 𝐹𝐷 ) } ) ↔ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : 𝐴1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∪ { 𝐶 , ( 𝐹𝐷 ) } ) ) )
25 18 24 mpbid ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : 𝐴1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∪ { 𝐶 , ( 𝐹𝐷 ) } ) )
26 23 f1oeq3d ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : 𝐴1-1-onto→ ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∪ { 𝐶 , ( 𝐹𝐷 ) } ) ↔ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : 𝐴1-1-onto𝐴 ) )
27 25 26 mpbid ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : 𝐴1-1-onto𝐴 )
28 f1oco ( ( 𝐹 : 𝐴1-1-onto𝐵 ∧ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : 𝐴1-1-onto𝐴 ) → ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ) : 𝐴1-1-onto𝐵 )
29 2 27 28 syl2anc ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ) : 𝐴1-1-onto𝐵 )
30 f1oeq1 ( 𝐺 = ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ) → ( 𝐺 : 𝐴1-1-onto𝐵 ↔ ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ) : 𝐴1-1-onto𝐵 ) )
31 1 30 ax-mp ( 𝐺 : 𝐴1-1-onto𝐵 ↔ ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ) : 𝐴1-1-onto𝐵 )
32 29 31 sylibr ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → 𝐺 : 𝐴1-1-onto𝐵 )
33 1 fveq1i ( 𝐺𝐶 ) = ( ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ) ‘ 𝐶 )
34 f1of ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : 𝐴1-1-onto𝐴 → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : 𝐴𝐴 )
35 27 34 syl ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : 𝐴𝐴 )
36 fvco3 ( ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) : 𝐴𝐴𝐶𝐴 ) → ( ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ) ‘ 𝐶 ) = ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ‘ 𝐶 ) ) )
37 35 5 36 syl2anc ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( 𝐹 ∘ ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ) ‘ 𝐶 ) = ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ‘ 𝐶 ) ) )
38 33 37 syl5eq ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( 𝐺𝐶 ) = ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ‘ 𝐶 ) ) )
39 fnresi ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) Fn ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } )
40 39 a1i ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) Fn ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) )
41 f1ofn ( { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } : { 𝐶 , ( 𝐹𝐷 ) } –1-1-onto→ { 𝐶 , ( 𝐹𝐷 ) } → { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } Fn { 𝐶 , ( 𝐹𝐷 ) } )
42 12 41 syl ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } Fn { 𝐶 , ( 𝐹𝐷 ) } )
43 prid1g ( 𝐶𝐴𝐶 ∈ { 𝐶 , ( 𝐹𝐷 ) } )
44 5 43 syl ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → 𝐶 ∈ { 𝐶 , ( 𝐹𝐷 ) } )
45 fvun2 ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) Fn ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∧ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } Fn { 𝐶 , ( 𝐹𝐷 ) } ∧ ( ( ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ∩ { 𝐶 , ( 𝐹𝐷 ) } ) = ∅ ∧ 𝐶 ∈ { 𝐶 , ( 𝐹𝐷 ) } ) ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ‘ 𝐶 ) = ( { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ‘ 𝐶 ) )
46 40 42 16 44 45 syl112anc ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ‘ 𝐶 ) = ( { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ‘ 𝐶 ) )
47 f1ofun ( { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } : { 𝐶 , ( 𝐹𝐷 ) } –1-1-onto→ { 𝐶 , ( 𝐹𝐷 ) } → Fun { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } )
48 12 47 syl ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → Fun { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } )
49 opex 𝐶 , ( 𝐹𝐷 ) ⟩ ∈ V
50 49 prid1 𝐶 , ( 𝐹𝐷 ) ⟩ ∈ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ }
51 funopfv ( Fun { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } → ( ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ ∈ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } → ( { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ‘ 𝐶 ) = ( 𝐹𝐷 ) ) )
52 48 50 51 mpisyl ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ‘ 𝐶 ) = ( 𝐹𝐷 ) )
53 46 52 eqtrd ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ‘ 𝐶 ) = ( 𝐹𝐷 ) )
54 53 fveq2d ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ‘ 𝐶 ) ) = ( 𝐹 ‘ ( 𝐹𝐷 ) ) )
55 f1ocnvfv2 ( ( 𝐹 : 𝐴1-1-onto𝐵𝐷𝐵 ) → ( 𝐹 ‘ ( 𝐹𝐷 ) ) = 𝐷 )
56 2 9 55 syl2anc ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( 𝐹 ‘ ( 𝐹𝐷 ) ) = 𝐷 )
57 54 56 eqtrd ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( 𝐹 ‘ ( ( ( I ↾ ( 𝐴 ∖ { 𝐶 , ( 𝐹𝐷 ) } ) ) ∪ { ⟨ 𝐶 , ( 𝐹𝐷 ) ⟩ , ⟨ ( 𝐹𝐷 ) , 𝐶 ⟩ } ) ‘ 𝐶 ) ) = 𝐷 )
58 38 57 eqtrd ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( 𝐺𝐶 ) = 𝐷 )
59 32 58 jca ( ( 𝐹 : 𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵 ) → ( 𝐺 : 𝐴1-1-onto𝐵 ∧ ( 𝐺𝐶 ) = 𝐷 ) )