Metamath Proof Explorer


Theorem fveqres

Description: Equal values imply equal values in a restriction. (Contributed by NM, 13-Nov-1995)

Ref Expression
Assertion fveqres ( ( 𝐹𝐴 ) = ( 𝐺𝐴 ) → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( ( 𝐺𝐵 ) ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 fvres ( 𝐴𝐵 → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( 𝐹𝐴 ) )
2 fvres ( 𝐴𝐵 → ( ( 𝐺𝐵 ) ‘ 𝐴 ) = ( 𝐺𝐴 ) )
3 1 2 eqeq12d ( 𝐴𝐵 → ( ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( ( 𝐺𝐵 ) ‘ 𝐴 ) ↔ ( 𝐹𝐴 ) = ( 𝐺𝐴 ) ) )
4 3 biimprd ( 𝐴𝐵 → ( ( 𝐹𝐴 ) = ( 𝐺𝐴 ) → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( ( 𝐺𝐵 ) ‘ 𝐴 ) ) )
5 nfvres ( ¬ 𝐴𝐵 → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ∅ )
6 nfvres ( ¬ 𝐴𝐵 → ( ( 𝐺𝐵 ) ‘ 𝐴 ) = ∅ )
7 5 6 eqtr4d ( ¬ 𝐴𝐵 → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( ( 𝐺𝐵 ) ‘ 𝐴 ) )
8 7 a1d ( ¬ 𝐴𝐵 → ( ( 𝐹𝐴 ) = ( 𝐺𝐴 ) → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( ( 𝐺𝐵 ) ‘ 𝐴 ) ) )
9 4 8 pm2.61i ( ( 𝐹𝐴 ) = ( 𝐺𝐴 ) → ( ( 𝐹𝐵 ) ‘ 𝐴 ) = ( ( 𝐺𝐵 ) ‘ 𝐴 ) )