Metamath Proof Explorer


Theorem fveu

Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017)

Ref Expression
Assertion fveu ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } )

Proof

Step Hyp Ref Expression
1 df-fv ( 𝐹𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 )
2 iotauni ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = { 𝑥𝐴 𝐹 𝑥 } )
3 1 2 eqtrid ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } )