| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fveval1fvcl.q | 
							⊢ 𝑂  =  ( eval1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							fveval1fvcl.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							fveval1fvcl.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							fveval1fvcl.u | 
							⊢ 𝑈  =  ( Base ‘ 𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							fveval1fvcl.r | 
							⊢ ( 𝜑  →  𝑅  ∈  CRing )  | 
						
						
							| 6 | 
							
								
							 | 
							fveval1fvcl.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							fveval1fvcl.m | 
							⊢ ( 𝜑  →  𝑀  ∈  𝑈 )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑅  ↑s  𝐵 )  =  ( 𝑅  ↑s  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝑅  ↑s  𝐵 ) )  =  ( Base ‘ ( 𝑅  ↑s  𝐵 ) )  | 
						
						
							| 10 | 
							
								3
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝐵  ∈  V )  | 
						
						
							| 12 | 
							
								1 2 8 3
							 | 
							evl1rhm | 
							⊢ ( 𝑅  ∈  CRing  →  𝑂  ∈  ( 𝑃  RingHom  ( 𝑅  ↑s  𝐵 ) ) )  | 
						
						
							| 13 | 
							
								4 9
							 | 
							rhmf | 
							⊢ ( 𝑂  ∈  ( 𝑃  RingHom  ( 𝑅  ↑s  𝐵 ) )  →  𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) )  | 
						
						
							| 14 | 
							
								5 12 13
							 | 
							3syl | 
							⊢ ( 𝜑  →  𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) )  | 
						
						
							| 15 | 
							
								14 7
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑀 )  ∈  ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) )  | 
						
						
							| 16 | 
							
								8 3 9 5 11 15
							 | 
							pwselbas | 
							⊢ ( 𝜑  →  ( 𝑂 ‘ 𝑀 ) : 𝐵 ⟶ 𝐵 )  | 
						
						
							| 17 | 
							
								16 6
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 )  ∈  𝐵 )  |