Step |
Hyp |
Ref |
Expression |
1 |
|
fveval1fvcl.q |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
2 |
|
fveval1fvcl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
fveval1fvcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
fveval1fvcl.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
5 |
|
fveval1fvcl.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
fveval1fvcl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
fveval1fvcl.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
8 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
9 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
10 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
12 |
1 2 8 3
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
13 |
4 9
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
14 |
5 12 13
|
3syl |
⊢ ( 𝜑 → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
15 |
14 7
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
16 |
8 3 9 5 11 15
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) : 𝐵 ⟶ 𝐵 ) |
17 |
16 6
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 ) |