| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1f | ⊢ ( 𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 }  →  𝐹 : { 𝐴 ,  𝐵 } ⟶ { 𝑋 ,  𝑌 } ) | 
						
							| 2 |  | prid1g | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  { 𝐴 ,  𝐵 } ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  𝐴  ∈  { 𝐴 ,  𝐵 } ) | 
						
							| 4 |  | ffvelcdm | ⊢ ( ( 𝐹 : { 𝐴 ,  𝐵 } ⟶ { 𝑋 ,  𝑌 }  ∧  𝐴  ∈  { 𝐴 ,  𝐵 } )  →  ( 𝐹 ‘ 𝐴 )  ∈  { 𝑋 ,  𝑌 } ) | 
						
							| 5 | 1 3 4 | syl2anr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 } )  →  ( 𝐹 ‘ 𝐴 )  ∈  { 𝑋 ,  𝑌 } ) | 
						
							| 6 |  | prid2g | ⊢ ( 𝐵  ∈  𝑊  →  𝐵  ∈  { 𝐴 ,  𝐵 } ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  { 𝐴 ,  𝐵 } ) | 
						
							| 8 |  | ffvelcdm | ⊢ ( ( 𝐹 : { 𝐴 ,  𝐵 } ⟶ { 𝑋 ,  𝑌 }  ∧  𝐵  ∈  { 𝐴 ,  𝐵 } )  →  ( 𝐹 ‘ 𝐵 )  ∈  { 𝑋 ,  𝑌 } ) | 
						
							| 9 | 1 7 8 | syl2anr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 } )  →  ( 𝐹 ‘ 𝐵 )  ∈  { 𝑋 ,  𝑌 } ) | 
						
							| 10 |  | elpri | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  { 𝑋 ,  𝑌 }  →  ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∨  ( 𝐹 ‘ 𝐴 )  =  𝑌 ) ) | 
						
							| 11 |  | elpri | ⊢ ( ( 𝐹 ‘ 𝐵 )  ∈  { 𝑋 ,  𝑌 }  →  ( ( 𝐹 ‘ 𝐵 )  =  𝑋  ∨  ( 𝐹 ‘ 𝐵 )  =  𝑌 ) ) | 
						
							| 12 |  | eqtr3 | ⊢ ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 )  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 13 | 3 7 | jca | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴  ∈  { 𝐴 ,  𝐵 }  ∧  𝐵  ∈  { 𝐴 ,  𝐵 } ) ) | 
						
							| 14 |  | f1veqaeq | ⊢ ( ( 𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 }  ∧  ( 𝐴  ∈  { 𝐴 ,  𝐵 }  ∧  𝐵  ∈  { 𝐴 ,  𝐵 } ) )  →  ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 15 | 13 14 | sylan2 | ⊢ ( ( 𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 }  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 16 | 12 15 | syl5 | ⊢ ( ( 𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 }  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 )  →  𝐴  =  𝐵 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 }  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 18 |  | eqneqall | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ≠  𝐵  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) | 
						
							| 19 | 18 | com12 | ⊢ ( 𝐴  ≠  𝐵  →  ( 𝐴  =  𝐵  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) | 
						
							| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴  =  𝐵  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) | 
						
							| 21 | 20 | a1i | ⊢ ( 𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 }  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴  =  𝐵  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) ) | 
						
							| 22 | 17 21 | syldd | ⊢ ( 𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 }  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) ) | 
						
							| 23 | 22 | impcom | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 } )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) | 
						
							| 24 |  | olc | ⊢ ( ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) | 
						
							| 25 | 24 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 } )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) | 
						
							| 26 |  | orc | ⊢ ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) | 
						
							| 27 | 26 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 } )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) | 
						
							| 28 |  | eqtr3 | ⊢ ( ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 29 | 28 15 | syl5 | ⊢ ( ( 𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 }  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 ) )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  →  𝐴  =  𝐵 ) ) | 
						
							| 30 | 29 | ex | ⊢ ( 𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 }  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 31 | 30 21 | syldd | ⊢ ( 𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 }  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) ) | 
						
							| 32 | 31 | impcom | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 } )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) | 
						
							| 33 | 23 25 27 32 | ccased | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 } )  →  ( ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∨  ( 𝐹 ‘ 𝐴 )  =  𝑌 )  ∧  ( ( 𝐹 ‘ 𝐵 )  =  𝑋  ∨  ( 𝐹 ‘ 𝐵 )  =  𝑌 ) )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) | 
						
							| 34 | 10 11 33 | syl2ani | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 } )  →  ( ( ( 𝐹 ‘ 𝐴 )  ∈  { 𝑋 ,  𝑌 }  ∧  ( 𝐹 ‘ 𝐵 )  ∈  { 𝑋 ,  𝑌 } )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) ) | 
						
							| 35 | 5 9 34 | mp2and | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐴  ≠  𝐵 )  ∧  𝐹 : { 𝐴 ,  𝐵 } –1-1→ { 𝑋 ,  𝑌 } )  →  ( ( ( 𝐹 ‘ 𝐴 )  =  𝑋  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑌 )  ∨  ( ( 𝐹 ‘ 𝐴 )  =  𝑌  ∧  ( 𝐹 ‘ 𝐵 )  =  𝑋 ) ) ) |