Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → 𝐹 : { 𝐴 , 𝐵 } ⟶ { 𝑋 , 𝑌 } ) |
2 |
|
prid1g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
4 |
|
ffvelcdm |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } ⟶ { 𝑋 , 𝑌 } ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) → ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } ) |
5 |
1 3 4
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } ) |
6 |
|
prid2g |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
8 |
|
ffvelcdm |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } ⟶ { 𝑋 , 𝑌 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) → ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } ) |
9 |
1 7 8
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } ) |
10 |
|
elpri |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } → ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐴 ) = 𝑌 ) ) |
11 |
|
elpri |
⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } → ( ( 𝐹 ‘ 𝐵 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ) |
12 |
|
eqtr3 |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
13 |
3 7
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) |
14 |
|
f1veqaeq |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
15 |
13 14
|
sylan2 |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
16 |
12 15
|
syl5 |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → 𝐴 = 𝐵 ) ) |
17 |
16
|
ex |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → 𝐴 = 𝐵 ) ) ) |
18 |
|
eqneqall |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
19 |
18
|
com12 |
⊢ ( 𝐴 ≠ 𝐵 → ( 𝐴 = 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
20 |
19
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
21 |
20
|
a1i |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) ) |
22 |
17 21
|
syldd |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) ) |
23 |
22
|
impcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
24 |
|
olc |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) |
25 |
24
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
26 |
|
orc |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) |
27 |
26
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
28 |
|
eqtr3 |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
29 |
28 15
|
syl5 |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → 𝐴 = 𝐵 ) ) |
30 |
29
|
ex |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → 𝐴 = 𝐵 ) ) ) |
31 |
30 21
|
syldd |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) ) |
32 |
31
|
impcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
33 |
23 25 27 32
|
ccased |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐴 ) = 𝑌 ) ∧ ( ( 𝐹 ‘ 𝐵 ) = 𝑋 ∨ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
34 |
10 11 33
|
syl2ani |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) ∈ { 𝑋 , 𝑌 } ∧ ( 𝐹 ‘ 𝐵 ) ∈ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) ) |
35 |
5 9 34
|
mp2and |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝐹 : { 𝐴 , 𝐵 } –1-1→ { 𝑋 , 𝑌 } ) → ( ( ( 𝐹 ‘ 𝐴 ) = 𝑋 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 𝐴 ) = 𝑌 ∧ ( 𝐹 ‘ 𝐵 ) = 𝑋 ) ) ) |