| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1f |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 𝐹 : ( 0 ..^ 3 ) ⟶ { 𝑋 , 𝑌 , 𝑍 } ) |
| 2 |
|
3nn |
⊢ 3 ∈ ℕ |
| 3 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 3 ) ↔ 3 ∈ ℕ ) |
| 4 |
2 3
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 3 ) |
| 5 |
4
|
a1i |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 0 ∈ ( 0 ..^ 3 ) ) |
| 6 |
1 5
|
ffvelcdmd |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) |
| 7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 8 |
|
1lt3 |
⊢ 1 < 3 |
| 9 |
|
elfzo0 |
⊢ ( 1 ∈ ( 0 ..^ 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3 ) ) |
| 10 |
7 2 8 9
|
mpbir3an |
⊢ 1 ∈ ( 0 ..^ 3 ) |
| 11 |
10
|
a1i |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 1 ∈ ( 0 ..^ 3 ) ) |
| 12 |
1 11
|
ffvelcdmd |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) |
| 13 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 14 |
|
2lt3 |
⊢ 2 < 3 |
| 15 |
|
elfzo0 |
⊢ ( 2 ∈ ( 0 ..^ 3 ) ↔ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3 ) ) |
| 16 |
13 2 14 15
|
mpbir3an |
⊢ 2 ∈ ( 0 ..^ 3 ) |
| 17 |
16
|
a1i |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 2 ∈ ( 0 ..^ 3 ) ) |
| 18 |
1 17
|
ffvelcdmd |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) |
| 19 |
|
eltpi |
⊢ ( ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) ) |
| 20 |
|
eltpi |
⊢ ( ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) ) |
| 21 |
|
eltpi |
⊢ ( ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) ) |
| 22 |
19 20 21
|
3anim123i |
⊢ ( ( ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) ) ) |
| 23 |
|
eqeq2 |
⊢ ( 𝑋 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 24 |
23
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( ( 𝐹 ‘ 1 ) = 𝑋 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 26 |
|
f1veqaeq |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 1 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → 1 = 0 ) ) |
| 27 |
10 4 26
|
mpanr12 |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → 1 = 0 ) ) |
| 28 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 29 |
|
eqneqall |
⊢ ( 1 = 0 → ( 1 ≠ 0 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 30 |
27 28 29
|
syl6mpi |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 32 |
25 31
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 33 |
|
eqeq2 |
⊢ ( 𝑋 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 34 |
33
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 36 |
16 4
|
pm3.2i |
⊢ ( 2 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) |
| 37 |
36
|
a1i |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( 2 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) ) |
| 38 |
|
f1veqaeq |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 2 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → 2 = 0 ) ) |
| 39 |
37 38
|
sylan2 |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → 2 = 0 ) ) |
| 40 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 41 |
|
eqneqall |
⊢ ( 2 = 0 → ( 2 ≠ 0 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 42 |
39 40 41
|
syl6mpi |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 43 |
35 42
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 45 |
|
eqeq2 |
⊢ ( 𝑌 = ( 𝐹 ‘ 1 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 46 |
45
|
eqcoms |
⊢ ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 47 |
46
|
adantl |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 48 |
16 10
|
pm3.2i |
⊢ ( 2 ∈ ( 0 ..^ 3 ) ∧ 1 ∈ ( 0 ..^ 3 ) ) |
| 49 |
48
|
a1i |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( 2 ∈ ( 0 ..^ 3 ) ∧ 1 ∈ ( 0 ..^ 3 ) ) ) |
| 50 |
|
f1veqaeq |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 2 ∈ ( 0 ..^ 3 ) ∧ 1 ∈ ( 0 ..^ 3 ) ) ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → 2 = 1 ) ) |
| 51 |
49 50
|
sylan2 |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → 2 = 1 ) ) |
| 52 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 53 |
52
|
necomi |
⊢ 2 ≠ 1 |
| 54 |
|
eqneqall |
⊢ ( 2 = 1 → ( 2 ≠ 1 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 55 |
51 53 54
|
syl6mpi |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 57 |
47 56
|
sylbid |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 58 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 0 ) = 𝑋 ) |
| 59 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 1 ) = 𝑌 ) |
| 60 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 2 ) = 𝑍 ) |
| 61 |
58 59 60
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ) |
| 62 |
61
|
orcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ) |
| 63 |
62
|
3mix1d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 64 |
63
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 65 |
44 57 64
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 66 |
65
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 67 |
43
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 68 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 0 ) = 𝑋 ) |
| 69 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 1 ) = 𝑍 ) |
| 70 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 2 ) = 𝑌 ) |
| 71 |
68 69 70
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) |
| 72 |
71
|
olcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ) |
| 73 |
72
|
3mix1d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 74 |
73
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 75 |
|
eqeq2 |
⊢ ( 𝑍 = ( 𝐹 ‘ 1 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 76 |
75
|
eqcoms |
⊢ ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 77 |
76
|
adantl |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 78 |
16 10 50
|
mpanr12 |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → 2 = 1 ) ) |
| 79 |
78 53 54
|
syl6mpi |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 81 |
80
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 82 |
77 81
|
sylbid |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 83 |
67 74 82
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 84 |
83
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 85 |
32 66 84
|
3jaod |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 86 |
85
|
ex |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑋 → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
| 87 |
|
eqeq2 |
⊢ ( 𝑋 = ( 𝐹 ‘ 1 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 88 |
87
|
eqcoms |
⊢ ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 89 |
88
|
adantl |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 90 |
79
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 91 |
90
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 92 |
89 91
|
sylbid |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 93 |
|
eqeq2 |
⊢ ( 𝑌 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 94 |
93
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑌 → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 95 |
94
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 96 |
16 4 38
|
mpanr12 |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → 2 = 0 ) ) |
| 97 |
96 40 41
|
syl6mpi |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 99 |
95 98
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 100 |
99
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 101 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 0 ) = 𝑌 ) |
| 102 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 1 ) = 𝑋 ) |
| 103 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 2 ) = 𝑍 ) |
| 104 |
101 102 103
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ) |
| 105 |
104
|
orcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
| 106 |
105
|
3mix2d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 107 |
106
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 108 |
92 100 107
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 109 |
108
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 110 |
|
eqeq2 |
⊢ ( 𝑌 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 111 |
110
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑌 → ( ( 𝐹 ‘ 1 ) = 𝑌 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 112 |
111
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 113 |
30
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 114 |
112 113
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 115 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 0 ) = 𝑌 ) |
| 116 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 1 ) = 𝑍 ) |
| 117 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 2 ) = 𝑋 ) |
| 118 |
115 116 117
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) |
| 119 |
118
|
olcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
| 120 |
119
|
3mix2d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 121 |
120
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 122 |
99
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 123 |
76
|
adantl |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 124 |
90
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 125 |
123 124
|
sylbid |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 126 |
121 122 125
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 127 |
126
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 128 |
109 114 127
|
3jaod |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 129 |
128
|
ex |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑌 → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
| 130 |
88
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 131 |
79
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 132 |
130 131
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 133 |
132
|
adantlr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 134 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 0 ) = 𝑍 ) |
| 135 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 1 ) = 𝑋 ) |
| 136 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 2 ) = 𝑌 ) |
| 137 |
134 135 136
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) |
| 138 |
137
|
orcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
| 139 |
138
|
3mix3d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 140 |
139
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 141 |
|
eqeq2 |
⊢ ( 𝑍 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 142 |
141
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑍 → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 143 |
142
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
| 144 |
97
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 145 |
143 144
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 146 |
145
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 147 |
133 140 146
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 148 |
147
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 149 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 0 ) = 𝑍 ) |
| 150 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 1 ) = 𝑌 ) |
| 151 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 2 ) = 𝑋 ) |
| 152 |
149 150 151
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) |
| 153 |
152
|
olcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
| 154 |
153
|
3mix3d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
| 155 |
154
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 156 |
46
|
adantl |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
| 157 |
79
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 158 |
157
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 159 |
156 158
|
sylbid |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 160 |
145
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 161 |
155 159 160
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 162 |
161
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 163 |
|
eqeq2 |
⊢ ( 𝑍 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 164 |
163
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑍 → ( ( 𝐹 ‘ 1 ) = 𝑍 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 165 |
164
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 166 |
30
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 167 |
165 166
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 168 |
148 162 167
|
3jaod |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
| 169 |
168
|
ex |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑍 → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
| 170 |
86 129 169
|
3jaod |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
| 171 |
170
|
3impd |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 172 |
22 171
|
syl5 |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
| 173 |
6 12 18 172
|
mp3and |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |