Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 𝐹 : ( 0 ..^ 3 ) ⟶ { 𝑋 , 𝑌 , 𝑍 } ) |
2 |
|
3nn |
⊢ 3 ∈ ℕ |
3 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 3 ) ↔ 3 ∈ ℕ ) |
4 |
2 3
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 3 ) |
5 |
4
|
a1i |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 0 ∈ ( 0 ..^ 3 ) ) |
6 |
1 5
|
ffvelcdmd |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) |
7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
8 |
|
1lt3 |
⊢ 1 < 3 |
9 |
|
elfzo0 |
⊢ ( 1 ∈ ( 0 ..^ 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3 ) ) |
10 |
7 2 8 9
|
mpbir3an |
⊢ 1 ∈ ( 0 ..^ 3 ) |
11 |
10
|
a1i |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 1 ∈ ( 0 ..^ 3 ) ) |
12 |
1 11
|
ffvelcdmd |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) |
13 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
14 |
|
2lt3 |
⊢ 2 < 3 |
15 |
|
elfzo0 |
⊢ ( 2 ∈ ( 0 ..^ 3 ) ↔ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3 ) ) |
16 |
13 2 14 15
|
mpbir3an |
⊢ 2 ∈ ( 0 ..^ 3 ) |
17 |
16
|
a1i |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → 2 ∈ ( 0 ..^ 3 ) ) |
18 |
1 17
|
ffvelcdmd |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) |
19 |
|
eltpi |
⊢ ( ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) ) |
20 |
|
eltpi |
⊢ ( ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) ) |
21 |
|
eltpi |
⊢ ( ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) ) |
22 |
19 20 21
|
3anim123i |
⊢ ( ( ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) ) ) |
23 |
|
eqeq2 |
⊢ ( 𝑋 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
24 |
23
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( ( 𝐹 ‘ 1 ) = 𝑋 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
26 |
|
f1veqaeq |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 1 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → 1 = 0 ) ) |
27 |
10 4 26
|
mpanr12 |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → 1 = 0 ) ) |
28 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
29 |
|
eqneqall |
⊢ ( 1 = 0 → ( 1 ≠ 0 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
30 |
27 28 29
|
syl6mpi |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
32 |
25 31
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
33 |
|
eqeq2 |
⊢ ( 𝑋 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
34 |
33
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
36 |
16 4
|
pm3.2i |
⊢ ( 2 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) |
37 |
36
|
a1i |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( 2 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) ) |
38 |
|
f1veqaeq |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 2 ∈ ( 0 ..^ 3 ) ∧ 0 ∈ ( 0 ..^ 3 ) ) ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → 2 = 0 ) ) |
39 |
37 38
|
sylan2 |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → 2 = 0 ) ) |
40 |
|
2ne0 |
⊢ 2 ≠ 0 |
41 |
|
eqneqall |
⊢ ( 2 = 0 → ( 2 ≠ 0 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
42 |
39 40 41
|
syl6mpi |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
43 |
35 42
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
45 |
|
eqeq2 |
⊢ ( 𝑌 = ( 𝐹 ‘ 1 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
46 |
45
|
eqcoms |
⊢ ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
48 |
16 10
|
pm3.2i |
⊢ ( 2 ∈ ( 0 ..^ 3 ) ∧ 1 ∈ ( 0 ..^ 3 ) ) |
49 |
48
|
a1i |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑋 → ( 2 ∈ ( 0 ..^ 3 ) ∧ 1 ∈ ( 0 ..^ 3 ) ) ) |
50 |
|
f1veqaeq |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 2 ∈ ( 0 ..^ 3 ) ∧ 1 ∈ ( 0 ..^ 3 ) ) ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → 2 = 1 ) ) |
51 |
49 50
|
sylan2 |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → 2 = 1 ) ) |
52 |
|
1ne2 |
⊢ 1 ≠ 2 |
53 |
52
|
necomi |
⊢ 2 ≠ 1 |
54 |
|
eqneqall |
⊢ ( 2 = 1 → ( 2 ≠ 1 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
55 |
51 53 54
|
syl6mpi |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
57 |
47 56
|
sylbid |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
58 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 0 ) = 𝑋 ) |
59 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 1 ) = 𝑌 ) |
60 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 2 ) = 𝑍 ) |
61 |
58 59 60
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ) |
62 |
61
|
orcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ) |
63 |
62
|
3mix1d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
64 |
63
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
65 |
44 57 64
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
66 |
65
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
67 |
43
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
68 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 0 ) = 𝑋 ) |
69 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 1 ) = 𝑍 ) |
70 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 2 ) = 𝑌 ) |
71 |
68 69 70
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) |
72 |
71
|
olcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ) |
73 |
72
|
3mix1d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
74 |
73
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
75 |
|
eqeq2 |
⊢ ( 𝑍 = ( 𝐹 ‘ 1 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
76 |
75
|
eqcoms |
⊢ ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
77 |
76
|
adantl |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
78 |
16 10 50
|
mpanr12 |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → 2 = 1 ) ) |
79 |
78 53 54
|
syl6mpi |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
80 |
79
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
81 |
80
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
82 |
77 81
|
sylbid |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
83 |
67 74 82
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
84 |
83
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
85 |
32 66 84
|
3jaod |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
86 |
85
|
ex |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑋 → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
87 |
|
eqeq2 |
⊢ ( 𝑋 = ( 𝐹 ‘ 1 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
88 |
87
|
eqcoms |
⊢ ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
89 |
88
|
adantl |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
90 |
79
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
91 |
90
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
92 |
89 91
|
sylbid |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
93 |
|
eqeq2 |
⊢ ( 𝑌 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
94 |
93
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑌 → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
95 |
94
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
96 |
16 4 38
|
mpanr12 |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → 2 = 0 ) ) |
97 |
96 40 41
|
syl6mpi |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
98 |
97
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
99 |
95 98
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
100 |
99
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
101 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 0 ) = 𝑌 ) |
102 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 1 ) = 𝑋 ) |
103 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( 𝐹 ‘ 2 ) = 𝑍 ) |
104 |
101 102 103
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ) |
105 |
104
|
orcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
106 |
105
|
3mix2d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
107 |
106
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
108 |
92 100 107
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
109 |
108
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
110 |
|
eqeq2 |
⊢ ( 𝑌 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
111 |
110
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑌 → ( ( 𝐹 ‘ 1 ) = 𝑌 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
112 |
111
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
113 |
30
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
114 |
112 113
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
115 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 0 ) = 𝑌 ) |
116 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 1 ) = 𝑍 ) |
117 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 2 ) = 𝑋 ) |
118 |
115 116 117
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) |
119 |
118
|
olcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
120 |
119
|
3mix2d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
121 |
120
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
122 |
99
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
123 |
76
|
adantl |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
124 |
90
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
125 |
123 124
|
sylbid |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
126 |
121 122 125
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
127 |
126
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
128 |
109 114 127
|
3jaod |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
129 |
128
|
ex |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑌 → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
130 |
88
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
131 |
79
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
132 |
130 131
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
133 |
132
|
adantlr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
134 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 0 ) = 𝑍 ) |
135 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 1 ) = 𝑋 ) |
136 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( 𝐹 ‘ 2 ) = 𝑌 ) |
137 |
134 135 136
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) |
138 |
137
|
orcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
139 |
138
|
3mix3d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
140 |
139
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
141 |
|
eqeq2 |
⊢ ( 𝑍 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
142 |
141
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑍 → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
143 |
142
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) ) ) |
144 |
97
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 0 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
145 |
143 144
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
146 |
145
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
147 |
133 140 146
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
148 |
147
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑋 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
149 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 0 ) = 𝑍 ) |
150 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 1 ) = 𝑌 ) |
151 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( 𝐹 ‘ 2 ) = 𝑋 ) |
152 |
149 150 151
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) |
153 |
152
|
olcd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) |
154 |
153
|
3mix3d |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |
155 |
154
|
ex |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑋 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
156 |
46
|
adantl |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 ↔ ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) ) ) |
157 |
79
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
158 |
157
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
159 |
156 158
|
sylbid |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑌 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
160 |
145
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( 𝐹 ‘ 2 ) = 𝑍 → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
161 |
155 159 160
|
3jaod |
⊢ ( ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
162 |
161
|
ex |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑌 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
163 |
|
eqeq2 |
⊢ ( 𝑍 = ( 𝐹 ‘ 0 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
164 |
163
|
eqcoms |
⊢ ( ( 𝐹 ‘ 0 ) = 𝑍 → ( ( 𝐹 ‘ 1 ) = 𝑍 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
165 |
164
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 ↔ ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
166 |
30
|
adantr |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 0 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
167 |
165 166
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( 𝐹 ‘ 1 ) = 𝑍 → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
168 |
148 162 167
|
3jaod |
⊢ ( ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) |
169 |
168
|
ex |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( 𝐹 ‘ 0 ) = 𝑍 → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
170 |
86 129 169
|
3jaod |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) → ( ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) ) ) |
171 |
170
|
3impd |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∨ ( 𝐹 ‘ 0 ) = 𝑌 ∨ ( 𝐹 ‘ 0 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 1 ) = 𝑋 ∨ ( 𝐹 ‘ 1 ) = 𝑌 ∨ ( 𝐹 ‘ 1 ) = 𝑍 ) ∧ ( ( 𝐹 ‘ 2 ) = 𝑋 ∨ ( 𝐹 ‘ 2 ) = 𝑌 ∨ ( 𝐹 ‘ 2 ) = 𝑍 ) ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
172 |
22 171
|
syl5 |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( 𝐹 ‘ 0 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 1 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ∧ ( 𝐹 ‘ 2 ) ∈ { 𝑋 , 𝑌 , 𝑍 } ) → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) ) |
173 |
6 12 18 172
|
mp3and |
⊢ ( 𝐹 : ( 0 ..^ 3 ) –1-1→ { 𝑋 , 𝑌 , 𝑍 } → ( ( ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑋 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑍 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑍 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ∨ ( ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑋 ∧ ( 𝐹 ‘ 2 ) = 𝑌 ) ∨ ( ( 𝐹 ‘ 0 ) = 𝑍 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ∧ ( 𝐹 ‘ 2 ) = 𝑋 ) ) ) ) |