Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) ∧ 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) → 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) |
2 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝐼 ∈ ℕ0 ) |
3 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝑁 ∈ ℕ0 ) |
4 |
|
nn0re |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) |
5 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
6 |
|
ltle |
⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐼 < 𝑁 → 𝐼 ≤ 𝑁 ) ) |
7 |
4 5 6
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 < 𝑁 → 𝐼 ≤ 𝑁 ) ) |
8 |
7
|
3impia |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝐼 ≤ 𝑁 ) |
9 |
|
elfz2nn0 |
⊢ ( 𝐼 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ≤ 𝑁 ) ) |
10 |
2 3 8 9
|
syl3anbrc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) → 𝐼 ∈ ( 0 ... 𝑁 ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) ∧ 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) → 𝐼 ∈ ( 0 ... 𝑁 ) ) |
12 |
1 11
|
ffvelrnd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁 ) ∧ 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 𝐼 ) ∈ 𝑉 ) |