Metamath Proof Explorer


Theorem fvif

Description: Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion fvif ( 𝐹 ‘ if ( 𝜑 , 𝐴 , 𝐵 ) ) = if ( 𝜑 , ( 𝐹𝐴 ) , ( 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 → ( 𝐹 ‘ if ( 𝜑 , 𝐴 , 𝐵 ) ) = ( 𝐹𝐴 ) )
2 fveq2 ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 → ( 𝐹 ‘ if ( 𝜑 , 𝐴 , 𝐵 ) ) = ( 𝐹𝐵 ) )
3 1 2 ifsb ( 𝐹 ‘ if ( 𝜑 , 𝐴 , 𝐵 ) ) = if ( 𝜑 , ( 𝐹𝐴 ) , ( 𝐹𝐵 ) )