| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snssi | ⊢ ( 𝐴  ∈  dom  𝐹  →  { 𝐴 }  ⊆  dom  𝐹 ) | 
						
							| 2 |  | funimass3 | ⊢ ( ( Fun  𝐹  ∧  { 𝐴 }  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  { 𝐴 } )  ⊆  𝐵  ↔  { 𝐴 }  ⊆  ( ◡ 𝐹  “  𝐵 ) ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  ( ( 𝐹  “  { 𝐴 } )  ⊆  𝐵  ↔  { 𝐴 }  ⊆  ( ◡ 𝐹  “  𝐵 ) ) ) | 
						
							| 4 |  | fvex | ⊢ ( 𝐹 ‘ 𝐴 )  ∈  V | 
						
							| 5 | 4 | snss | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ↔  { ( 𝐹 ‘ 𝐴 ) }  ⊆  𝐵 ) | 
						
							| 6 |  | eqid | ⊢ dom  𝐹  =  dom  𝐹 | 
						
							| 7 |  | df-fn | ⊢ ( 𝐹  Fn  dom  𝐹  ↔  ( Fun  𝐹  ∧  dom  𝐹  =  dom  𝐹 ) ) | 
						
							| 8 | 7 | biimpri | ⊢ ( ( Fun  𝐹  ∧  dom  𝐹  =  dom  𝐹 )  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 9 | 6 8 | mpan2 | ⊢ ( Fun  𝐹  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 10 |  | fnsnfv | ⊢ ( ( 𝐹  Fn  dom  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  { ( 𝐹 ‘ 𝐴 ) }  =  ( 𝐹  “  { 𝐴 } ) ) | 
						
							| 11 | 9 10 | sylan | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  { ( 𝐹 ‘ 𝐴 ) }  =  ( 𝐹  “  { 𝐴 } ) ) | 
						
							| 12 | 11 | sseq1d | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  ( { ( 𝐹 ‘ 𝐴 ) }  ⊆  𝐵  ↔  ( 𝐹  “  { 𝐴 } )  ⊆  𝐵 ) ) | 
						
							| 13 | 5 12 | bitrid | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ↔  ( 𝐹  “  { 𝐴 } )  ⊆  𝐵 ) ) | 
						
							| 14 |  | snssg | ⊢ ( 𝐴  ∈  dom  𝐹  →  ( 𝐴  ∈  ( ◡ 𝐹  “  𝐵 )  ↔  { 𝐴 }  ⊆  ( ◡ 𝐹  “  𝐵 ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  ( 𝐴  ∈  ( ◡ 𝐹  “  𝐵 )  ↔  { 𝐴 }  ⊆  ( ◡ 𝐹  “  𝐵 ) ) ) | 
						
							| 16 | 3 13 15 | 3bitr4d | ⊢ ( ( Fun  𝐹  ∧  𝐴  ∈  dom  𝐹 )  →  ( ( 𝐹 ‘ 𝐴 )  ∈  𝐵  ↔  𝐴  ∈  ( ◡ 𝐹  “  𝐵 ) ) ) |