Step |
Hyp |
Ref |
Expression |
1 |
|
snssi |
⊢ ( 𝐴 ∈ dom 𝐹 → { 𝐴 } ⊆ dom 𝐹 ) |
2 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ { 𝐴 } ⊆ dom 𝐹 ) → ( ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ↔ { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ↔ { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) |
4 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
5 |
4
|
snss |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) |
6 |
|
eqid |
⊢ dom 𝐹 = dom 𝐹 |
7 |
|
df-fn |
⊢ ( 𝐹 Fn dom 𝐹 ↔ ( Fun 𝐹 ∧ dom 𝐹 = dom 𝐹 ) ) |
8 |
7
|
biimpri |
⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = dom 𝐹 ) → 𝐹 Fn dom 𝐹 ) |
9 |
6 8
|
mpan2 |
⊢ ( Fun 𝐹 → 𝐹 Fn dom 𝐹 ) |
10 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
11 |
9 10
|
sylan |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
12 |
11
|
sseq1d |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ↔ ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) ) |
13 |
5 12
|
syl5bb |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) ) |
14 |
|
snssg |
⊢ ( 𝐴 ∈ dom 𝐹 → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ↔ { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ↔ { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) |
16 |
3 13 15
|
3bitr4d |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |