Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → 𝐹 Fn ( 0 ... 𝐾 ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 𝐹 Fn ( 0 ... 𝐾 ) ) |
3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
4 |
3
|
a1i |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 0 ∈ ℕ0 ) |
5 |
|
simpr |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
6 |
|
nn0ge0 |
⊢ ( 𝐾 ∈ ℕ0 → 0 ≤ 𝐾 ) |
7 |
6
|
adantl |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 0 ≤ 𝐾 ) |
8 |
|
elfz2nn0 |
⊢ ( 0 ∈ ( 0 ... 𝐾 ) ↔ ( 0 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 0 ≤ 𝐾 ) ) |
9 |
4 5 7 8
|
syl3anbrc |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 0 ∈ ( 0 ... 𝐾 ) ) |
10 |
|
id |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℕ0 ) |
11 |
|
nn0re |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) |
12 |
11
|
leidd |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ≤ 𝐾 ) |
13 |
|
elfz2nn0 |
⊢ ( 𝐾 ∈ ( 0 ... 𝐾 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝐾 ) ) |
14 |
10 10 12 13
|
syl3anbrc |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ( 0 ... 𝐾 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ( 0 ... 𝐾 ) ) |
16 |
|
fnimapr |
⊢ ( ( 𝐹 Fn ( 0 ... 𝐾 ) ∧ 0 ∈ ( 0 ... 𝐾 ) ∧ 𝐾 ∈ ( 0 ... 𝐾 ) ) → ( 𝐹 “ { 0 , 𝐾 } ) = { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ) |
17 |
2 9 15 16
|
syl3anc |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐹 “ { 0 , 𝐾 } ) = { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ) |
18 |
17
|
ineq1d |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
19 |
18
|
eqeq1d |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ↔ ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ) ) |
20 |
|
disj |
⊢ ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ↔ ∀ 𝑣 ∈ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) |
21 |
|
fvex |
⊢ ( 𝐹 ‘ 0 ) ∈ V |
22 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐾 ) ∈ V |
23 |
|
eleq1 |
⊢ ( 𝑣 = ( 𝐹 ‘ 0 ) → ( 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
24 |
23
|
notbid |
⊢ ( 𝑣 = ( 𝐹 ‘ 0 ) → ( ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
25 |
|
df-nel |
⊢ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) |
26 |
24 25
|
bitr4di |
⊢ ( 𝑣 = ( 𝐹 ‘ 0 ) → ( ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
27 |
|
eleq1 |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝐾 ) → ( 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
28 |
27
|
notbid |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝐾 ) → ( ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
29 |
|
df-nel |
⊢ ( ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) |
30 |
28 29
|
bitr4di |
⊢ ( 𝑣 = ( 𝐹 ‘ 𝐾 ) → ( ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
31 |
21 22 26 30
|
ralpr |
⊢ ( ∀ 𝑣 ∈ { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ¬ 𝑣 ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
32 |
20 31
|
bitri |
⊢ ( ( { ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ 𝐾 ) } ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ↔ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
33 |
19 32
|
bitrdi |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ↔ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) ) |